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Abstract

This paper addresses the fundamental task of estimating covariance matrix functions for high-
dimensional functional data/functional time series. We consider two functional factor structures en-
compassing either functional factors with scalar loadings or scalar factors with functional loadings, and
postulate functional sparsity on the covariance of idiosyncratic errors after taking out the common
unobserved factors. To facilitate estimation, we rely on the spiked matrix model and its functional
generalization, and derive some novel asymptotic identifiability results, based on which we develop
DIGIT and FPOET estimators under two functional factor models, respectively. Both estimators in-
volve performing associated eigenanalysis to estimate the covariance of common components, followed
by adaptive functional thresholding applied to the residual covariance. We also develop functional
information criteria for model selection with theoretical guarantees. The convergence rates of involved
estimated quantities are respectively established for DIGIT and FPOET estimators. Numerical stud-
ies including extensive simulations and a real data application on functional portfolio allocation are
conducted to examine the finite-sample performance of the proposed methodology.
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1 Introduction

With advancements in data collection technology, multivariate functional data/functional time series

are emerging in a wide range of scientific and economic applications. Examples include different types of

brain imaging data in neuroscience, intraday return trajectories for a collection of stocks, age-specific mor-

tality rates across different countries, and daily energy consumption curves from thousands of households,

among others. Such data can be represented as ytp¨q “ tyt1p¨q, . . . , ytpp¨quT defined on a compact interval

U , with the marginal- and cross-covariance operators induced from the associated kernel functions. These

operators together form the operator-valued covariance matrix, which is also referred to as the following

covariance matrix function for notational simplicity:

Σy “ tΣy,jkp¨, ¨qupˆp, Σy,jkpu, vq “ Covtytjpuq, ytkpvqu, pu, vq P U2,

and we observe stationary ytp¨q for t “ 1, . . . , n.

The estimation of the covariance matrix function and its inverse is of paramount importance in mul-

tivariate functional data/functional time series analysis. An estimator of Σy is not only of interest in its

own right but also essential for subsequent analyses, such as dimension reduction and modeling of tytp¨qu.

Examples include multivariate functional principal components analysis (MFPCA) (Happ and Greven,

2018), functional risk management, multivariate functional linear regression (Chiou et al., 2016) and func-

tional linear discriminant analysis (Xue et al., 2024). See Section 4 for details of some applications. In

increasingly available high-dimensional settings where the dimension p diverges with, or is larger than, the

number of independent or serially dependent observations n, the sample covariance matrix function pΣ
S

y

performs poorly and some regularization is needed. Fang et al. (2024) pioneered this effort by assuming

approximate functional sparsity in Σy, where the Hilbert–Schmidt norms of some Σy,jk’s are assumed

zero or close to zero. Then they applied adaptive functional thresholding to the entries of pΣ
S

y to achieve

a consistent estimator of Σy.

Such functional sparsity assumption, however, is restrictive or even unrealistic for many datasets,

particularly in finance and economics, where variables often exhibit high correlations. E.g., in the stock

market, the co-movement of intraday return curves (Horváth et al., 2014) is typically influenced by a

small number of common market factors, leading to highly correlated functional variables. To alleviate

the direct imposition of sparsity assumption, we employ the functional factor model (FFM) framework for

ytp¨q, which decomposes it into two uncorrelated components, one common χtp¨q driven by low-dimensional

latent factors and one idiosyncratic εtp¨q. We consider two types of FFM. The first type, explored in Guo

et al. (2025), admits the representation with functional factors and scalar loadings:

ytp¨q “ χtp¨q ` εtp¨q “ Bftp¨q ` εtp¨q, t “ 1, . . . , n, (1)

where ftp¨q is a latent stationary r-vector of functional factors, B is a p ˆ r matrix of factor loadings and

εtp¨q is a p-vector of idiosyncratic errors. The second type, introduced by Hallin et al. (2023), involves

scalar factors and functional loadings:

ytp¨q “ κtp¨q ` εtp¨q “ Qp¨qγt ` εtp¨q, t “ 1, . . . , n, (2)
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where γt is a latent stationary r-vector of factors and Qp¨q is a pˆ r matrix of functional factor loadings.

We refer to Σf , Σχ, Σκ and Σε as the covariance matrix functions of ft, χt, κt and εt, respectively.

One may consider a more generalized FFM with functional factors and operator-valued loadings, see (13)

below. However, estimating such a complex structure will introduce elevated errors when estimating the

covariance matrix function. Moreover, by employing a basis expansion approach, the estimation of (13)

can be reduced to that of (2), see Remark 2.5 below. Hence, our paper focuses on FFMs (1) and (2).

Within the FFM framework, our goal is to estimate the covariance matrix function Σy “ Σχ `Σε for

model (1) (or Σy “ Σκ ` Σε for model (2)). Inspired by Fan et al. (2013), we impose the approximately

functional sparsity assumption on Σε instead of Σy directly giving rise to the conditional functional

sparsity structure in models (1) and (2). To effectively separate χtp¨q (or κtp¨q) from εtp¨q, we rely on

the spiked matrix model (Fan et al., 2021) and its functional generalization, i.e., a large nonnegative

definite matrix or operator-valued matrix Λ “ L ` S, where L is low rank and its nonzero eigenvalues

grow fast as p diverges, whereas all the eigenvalues of S are bounded or grow much slower. The spikeness

pattern ensures that the large signals are concentrated on L, which facilitates our estimation procedure.

Specifically, for model (2), with the decomposition

Σyp¨, ˚q
looomooon

Λ

“ Qp¨qCovpγtqQp˚qT
loooooooooomoooooooooon

L

`Σεp¨, ˚q
loomoon

S

, (3)

we perform MFPCA based on pΣ
S

y , then estimate Σκ using the leading r functional principal components

and finally propose a novel adaptive functional thresholding procedure to estimate the sparse Σε. This

results in a Functional Principal Orthogonal complEment Thresholding (FPOET) estimator, extending

the POET methodology for large covariance matrix estimation (Fan et al., 2013; Wang et al., 2021) to

the functional domain. Alternatively, for model (1), considering the violation of nonnegative definiteness

in Σypu, vq for u ‰ v, we utilize the nonnegative definite doubly integrated Gram covariance:

ż ż

Σypu, vqΣypu, vqTdudv
looooooooooooooooomooooooooooooooooon

Λ

“ B
!

ż ż

Σf pu, vqBTBΣf pu, vqTdudv
)

BT

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

L

` remaining terms
looooooooomooooooooon

S

, (4)

which is shown to be identified asymptotically as p Ñ 8. We propose to carry out eigenanalysis of the

sample version of Λ in (4) combined with least squares to estimate B, ftp¨q and hence Σχ, and then

employ the same thresholding method to estimate Σε. This yields a Doubly Integrated Gram covarIance

and Thresholding (DIGIT) estimator.

The new contribution of this paper can be summarized in five key aspects. First, though our model (1)

shares the same form as the one in Guo et al. (2025) and aligns with the direction of static factor models

in Bai and Ng (2002) and Fan et al. (2013), substantial advances have been made in our methodology and

theory: (i) We allow weak serial correlations in idiosyncratic components εtp¨q rather than assuming the

white noise. (ii) Unlike the autocovariance-based method (Guo et al., 2025) for serially dependent data,

we leverage the covariance information to propose a more efficient estimation procedure that encompasses

independent observations as a special case. (iii) More importantly, under the pervasiveness assumption,

we establish novel asymptotic identifiability in (4), where the first r eigenvalues of L grow at rate Opp2q,

whereas all the eigenvalues of S diverge at a rate slower than Opp2q.
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Second, for model (2), we extend the standard asymptotically identified covariance decomposition

in Bai and Ng (2002) to the functional domain, under the functional counterpart of the pervasiveness

assumption. Building upon these findings, we provide mathematical insights when the functional factor

analysis for models (1) and (2) and the proposed eigenanalysis of the respective Λ’s in (3) and (4) are

approximately the same for high-dimensional functional data. Differing from the least squares method

in Hallin et al. (2023), we develop a novel MFPCA method to estimate model (2) and also establish the

theoretical equivalence of the covariance matrix function estimators based on two methods.

Third, we develop a new adaptive functional thresholding approach to estimate sparse Σε. Compared

to the competitor in Fang et al. (2024), our approach requires weaker assumptions while achieving similar

finite-sample performance. Fourth, with the aid of such thresholding technique combined with our esti-

mation of FFMs (1) and (2), we propose two factor-guided covariance matrix function estimators, DIGIT

and FPOET, respectively. We derive the associated convergence rates of estimators for Σε, Σy and its

inverse under various functional matrix norms. Additionally, we introduce fully functional information

criteria to select the more suitable model between FFMs (1) and (2) with theoretical guarantees. Last

but not least, we establish a new functional risk management framework to account for uncertainties in

intraday returns of financial data, where our proposed estimators can be applied.

The rest of the paper is organized as follows. Section 2 presents the corresponding procedures for

estimating Σy under two FFMs and the information criteria used for model selection. Section 3 provides

the asymptotic theory for the estimated quantities. Section 4 discusses a couple of applications of the pro-

posed estimation. We assess the finite-sample performance of our proposal through extensive simulations

in Section 5 and a financial data application in Section 6. Section 7 discusses some future work.

Throughout the paper, for any matrix M “ pMijqpˆq, we denote its matrices ℓ1 norm, ℓ8 norm, oper-

ator norm, Frobenius norm and elementwise ℓ8 norm by }M}1 “ maxj
ř

i |Mij |, }M}8 “ maxi
ř

j |Mij |,

}M} “ λ
1{2
maxpMTMq, }M}F “ p

ř

i,j M
2
ijq

1{2 and }M}max “ maxi,j |Mij |, respectively. Let H “ L2pUq be

the Hilbert space of squared integrable functions defined on the compact set U . We denote its p-fold Carte-

sian product byHp “ Hˆ¨ ¨ ¨ˆH and tensor product by S “ HbH. For f “ pf1, . . . , fpqT,g “ pg1, . . . , gpqT P

Hp, we denote the inner product by xf ,gy “
ş

U fpuqTgpuqdu with induced norm } ¨ } “ x¨, ¨y1{2. For an

integral matrix operator K : Hp Ñ Hq induced from the kernel matrix function K “ tKijp¨, ¨quqˆp with

each Kij P S, Kpfqp¨q “
ş

U Kp¨, uqfpuqdu P Hq for any given f P Hp. For notational economy, we will use K

to denote both the kernel function and the operator. We define the functional version of matrix ℓ1 norm

by }K}S,1 “ maxj
ř

i }Kij}S , where, for each Kij P S, we denote its Hilbert–Schmidt norm by }Kij}S “

t
ş ş

Kijpu, vq2dudvu1{2. Similarly, we define }K}S,8 “ maxi
ř

j }Kij}S , }K}S,F “ t
ř

i,j }Kij}
2
Su1{2 and

}K}S,max “ maxi,j }Kij}S as the functional versions of matrix ℓ8, Frobenius and elementwise ℓ8 norms,

respectively. We define the operator norm by }K}L “ supxPHp,}x}ď1 }Kpxq} and the trace norm by

}K}N “ trt
ş

Kpu, uqduu for p “ q. For a positive integer m, write rms “ t1, . . . ,mu and denote by Im the

identity matrix of size mˆm. For x, y P R, we use x^y “ minpx, yq. For two positive sequences tanu and

tbnu, we write an À bn or an “ Opbnq or bn Á an if there exists a positive constant c such that an{bn ď c,

and an “ opbnq if an{bn Ñ 0. We write an — bn if and only if an À bn and an Á bn hold simultaneously.
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2 Methodology

2.1 FFM with functional factors

Suppose that ytp¨q admits FFM representation (1), where r common functional factors in ftp¨q “

tft1p¨q, . . . , ftrp¨quT are uncorrelated with the idiosyncratic errors εtp¨q “ tεt1p¨q, . . . , εtpp¨quT and r is

assumed to be fixed. Then we have

Σypu, vq “ BΣf pu, vqBT ` Σεpu, vq, pu, vq P U2, (5)

which is not nonnegative definite for some u, v. To ensure nonnegative definiteness and accumulate co-

variance information as much as possible, we propose to perform an eigenanalysis of doubly integrated

Gram covariance:

Ω “

ż ż

Σypu, vqΣypu, vqTdudv ” ΩL ` ΩR, (6)

where ΩR “
ş ş

Σεpu, vqΣεpu, vqTdudv `
ş ş

BΣf pu, vqBTΣεpu, vqTdudv `
ş ş

Σεpu, vqBΣf pu, vqTBTdudv

and ΩL “ Bt
ş ş

Σf pu, vqBTBΣf pu, vqTdudvuBT. To make the loading matrix B asymptotically identifi-

able in the decomposition (6), we impose the following condition.

Assumption 1. p´1BTB “ Ir and
ş ş

Σf pu, vqΣf pu, vqTdudv “ diagpθ1, . . . , θrq, where there exist some

constants θ ą θ ą 0 such that θ ą θ1 ą θ2 ą ¨ ¨ ¨ ą θr ą θ.

Remark 2.1. Model (1) exhibits an identifiable issue as it remains unchanged if tB, ftp¨qu is replaced by

tBU,U´1ftp¨qu for any invertible matrix U. Bai and Ng (2002) assumed two types of normalization for

the scalar factor model: one is p´1BTB “ Ir and the other is Covpftq “ Ip. We adopt the first type for

model (1) to simplify the calculation of the low rank matrix ΩL in (6). However, this constraint alone is

insufficient to identify B, but the space spanned by the columns of B “ pb1, . . . ,brq. Hence, we introduce

an additional constraint based on the diagonalization of
ş ş

Σf pu, vqΣf pu, vqTdudv, which is ensured by

the fact that any nonnegative-definite matrix can be orthogonally diagonalized. Under Assumption 1, we

can express ΩL “
řr

i“1 pθibib
T
i , implying that }ΩL} — }ΩL}min — p2.

We now elucidate why performing eigenanalysis of Ω can be employed for functional factor analysis

under model (1). Write rB “ p´1{2B “ prb1, ¨ ¨ ¨ , rbrq, which satisfies rBT
rB “ Ir. Under Assumption 1, it

holds that ΩL “ p2
řr

i“1 θi
rbi
rbT
i , whose eigenvalue/eigenvector pairs are tpp2θi, rbiquiPrrs. Let λ1 ě ¨ ¨ ¨ ě λp

be the ordered eigenvalues of Ω and ξ1, . . . , ξp be the corresponding eigenvectors. We then have the

following proposition.

Proposition 1. Suppose that Assumption 1 and }ΩR} “ opp2q hold. Then we have

(i) |λj ´ p2θj | ď }ΩR} for j P rrs and |λj | ď }ΩR} for j P rpszrrs;

(ii) }ξj ´ rbj} “ Opp´2}ΩR}q for j P rrs.

Proposition 1 indicates that we can distinguish the leading eigenvalues tλjujPrrs from the remaining

eigenvalues, and ensure the approximate equivalence between eigenvectors tξjujPrrs and the normalized

factor loading columns trbjujPrrs, provided that }ΩR} “ opp2q. Towards this, we impose an approximately
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functional sparsity condition on Σε measured through

sp “ max
iPrps

p
ÿ

j“1

}σi}
p1´qq{2
N }σj}

p1´qq{2
N }Σε,ij}

q
S , for some q P r0, 1q, (7)

where σipuq “ Σε,iipu, uq for u P U and i P rps. Specially, when q “ 0 and t}σi}N u are bounded, sp can be

simplified to the exact functional sparsity, i.e., maxi
ř

j Ip}Σε,ij}S ‰ 0q.

Remark 2.2. (i) Our proposed measure of functional sparsity in (7) for non-functional data degenerates

to the measure of sparsity adopted in Cai and Liu (2011). It is worth mentioning that Fang et al. (2024)

introduced a different measure of functional sparsity as

s̃p “ max
iPrps

p
ÿ

j“1

}σi}
p1´qq{2
8 }σj}

p1´qq{2
8 }Σε,ij}

q
S ,

where }σi}8 “ supuPU σipuq ě }σi}N . As a result, we will use sp instead of s̃p.

(ii) With bounded t}σi}N u, we can easily obtain }Σε}S,1 “ }Σε}S,8 “ Opspq, which, along with Lem-

mas A.6, A.9 in the appendix and Assumption 1, yields that

}ΩR} ď }Σε}S,8}Σε}S,1 ` 2 p}BΣfB
T}S,8}BΣfB

T}S,1q
1{2

p}Σε}S,1}Σε}S,8q
1{2

“ Ops2p ` pspq.

Hence, when sp “ oppq, Proposition 1 implies that functional factor analysis under model (1) and eigen-

analysis of Ω are approximately the same for high-dimensional functional data.

To estimate model (1), we assume the number of functional factors (i.e., r) is known, and will introduce

a data-driven approach to determine it in Section 2.3. Without loss of generality, we assume that ytp¨q

has been centered to have mean zero. The sample covariance matrix function of Σyp¨, ¨q is given by

pΣ
S

y pu, vq “ n´1
řn

t“1 ytpuqytpvqT. Performing eigen-decomposition on the sample version of Ω,

pΩ “

ż ż

pΣ
S

y pu, vqpΣ
S

y pu, vqTdudv, (8)

leads to estimated eigenvalues λ̂1, . . . , λ̂p and their associated eigenvectors pξ1, . . . ,
pξp. Then the estimated

factor loading matrix is pB “
?
pppξ1, . . . ,

pξrq “ ppb1, . . . , pbrq.

To estimate functional factors tftp¨qutPrns, we minimize the least squares criterion

n
ÿ

t“1

}yt ´ pBft}
2 “

n
ÿ

t“1

ż

U
tytpuq ´ pBftpuquTtytpuq ´ pBftpuqudu (9)

with respect to f1p¨q, . . . , fnp¨q. Setting the functional derivatives to zero, we obtain the least squares esti-

mator pftp¨q “ p´1
pBTytp¨q and estimated idiosyncratic errors in pεtp¨q “ pIp ´p´1

pBpBTqytp¨q. Hence, we can

obtain sample covariance matrix functions of estimated common factors and estimated idiosyncratic errors

as pΣf pu, vq “ n´1
řn

t“1
pftpuqpftpvqT and pΣεpu, vq “ tpΣε,ijpu, vqupˆp “

řn
t“1 n

´1
pεtpuqpεtpvqT, respectively.

Since Σε is assumed to be functional sparse, we introduce an adaptive functional thresholding (AFT)

estimator of Σε. To this end, we define the functional variance factors Θijpu, vq “ Vartεtipuqεtjpvqu for
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i, j P rps, whose estimators are

pΘijpu, vq “
1

n

n
ÿ

t“1

␣

pεtipuqpεtjpvq ´ pΣε,ijpu, vq
(2
,

with pεtip¨q “ ytip¨q ´

p

b
T

i
pftp¨q and

p

bi being the i-th row vector of pB. We develop an AFT procedure on

pΣε using entry-dependent functional thresholds that automatically adapt to the variability of pΣε,ij ’s.

Specifically, the AFT estimator is defined as pΣ
A

ε “ tpΣA
ε,ijp¨, ¨qupˆp with

pΣA
ε,ij “

›

›pΘ
1{2
ij

›

›

S ˆ sλ

´

pΣε,ij{
›

›pΘ
1{2
ij

›

›

S

¯

with λ “ 9C
`

a

log p{n ` 1{
?
p
˘

, (10)

where 9C ą 0 is a pre-specified constant that can be selected via multifold cross-validation and the order
a

log p{n`1{
?
p is related to the convergence rate of pΣε,ij{

›

›pΘ
1{2
ij

›

›

S under functional elementwise ℓ8 norm.

Here sλ is a functional thresholding operator with regularization parameter λ ě 0 (Fang et al., 2024) and

belongs to the class sλ : S Ñ S satisfying: (i) }sλpZq}S ď c}Y }S for all Z, Y P S that satisfy }Z ´Y }S ď λ

and some c ą 0; (ii) }sλpZq}S “ 0 for }Z}S ď λ; (iii) }sλpZq ´ Z}S ď λ for all Z P S. This class includes
functional versions of commonly-adopted thresholding functions, such as soft thresholding, SCAD (Fan

and Li, 2001), and the adaptive lasso (Zou, 2006).

Remark 2.3. By comparison, Fang et al. (2024) introduced an alternative AFT estimator

rΣ
A

ε “ prΣA
ε,ijqpˆp with rΣA

ε,ij “ pΘ
1{2
ij ˆ sλ

´

pΣε,ij{pΘ
1{2
ij

¯

, (11)

which uses a single threshold level to functionally threshold standardized entries pΣε,ij{pΘ
1{2
ij across all pi, jq,

resulting in entry-dependent functional thresholds for pΣε,ij . Since rΣA
ε,jk requires stronger assumptions (see

Remark 2.2 above and the remark for Assumption 5 below), we adopt the AFT estimator pΣA
ε,jk, leading

to comparable empirical performance (see Section S.6 of the supplementary material).

Finally, we obtain a DIGIT estimator of Σy as

pΣ
D

y pu, vq “ pBpΣf pu, vqpBT ` pΣ
A

ε pu, vq, pu, vq P U2. (12)

2.2 FFM with functional loadings

The structure of FFM is not unique. We could also assume that ytp¨q satisfies FFM (2) with scalar

factors and functional loadings Qp¨q “ tq1p¨q, . . . ,qpp¨quT with each qip¨q P Hr, where r common scalar

factors γt “ pγt1, . . . , γtrqT are uncorrelated with idiosyncratic errors εtp¨q and r is assumed to be fixed.

Remark 2.4. (i) While both FFMs assume that different components of ytp¨q are defined in a common

domain, FFM (2) can be generalized to allow different components to reside in different domains that may

differ in dimensions (e.g., curves and images). However, this generalization is not feasible for FFM (1)

as it involves integrals beyond the inner product used for FFM (2). In almost all real data applications

in the existing literature, the corresponding components all lie in the same domain. Therefore, we focus

on a conceptually special yet practical common case as in FFMs (1) and (2).
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(ii) Both (1) and (2) yield useful FFMs but are tailored to tackle rather different situations. A cru-

cial aspect of modeling functional time series is to characterize the functional and dynamic structures.

FFM (1) assumes that both structures are inherited from functional time series factors tftp¨qu with scalar

loadings for enhanced interpretability. In contrast, FFM (2) incorporates dynamic information through

scalar time series factors tγtu while preserving infinite-dimensionality in functional loadings of Qp¨q.

Remark 2.5. Consider a more generalized FFM (Leng et al., 2024) with functional factors and operator-

valued loadings:

ytp¨q “ rAprftqp¨q ` εtp¨q “

ż

U
rAp¨, vqrftpvqdv ` εtp¨q, t P rns, (13)

where rftp¨q is a latent stationary r-vector of functional factors and rAp¨, ¨q is a pˆr operator-valued matrix.

For each j P rrs, we apply the basis expansion approach to the j-th component of rftp¨q, f̃tjp¨q “ ϕjp¨qTrγt `

ηtjp¨q, where ϕjp¨q is a d-vector of basis function, rγt is a d-vector of basis coefficients, and ηtjp¨q is the

truncation error. Let Φp¨q “ tϕ1p¨q, . . . ,ϕrp¨quT,ηtp¨q “ tηt1p¨q, . . . , ηtrp¨quT, rQp¨q “
ş

U
rAp¨, vqΦpvqdv and

rεtp¨q “ εtp¨q`
ş

U
rAp¨, vqηtpvqdv. Then, FFM (13) can be rewritten as ytp¨q “ rQp¨qrγt`rεtp¨q, which mirrors

the form of FFM (2) with d scalar factors, as the truncation errors are incorporated into the idiosyncratic

components. However, the estimation procedure demands strong technical conditions, and estimating the

covariance matrix function within a more complex structure can lead to increased accumulated errors.

Hence, our paper focuses on FFM (2) instead of FFM (13).

Under FFM (2), we have the covariance decomposition

Σypu, vq “ QpuqΣγQpvqT ` Σεpu, vq, pu, vq P U2. (14)

By the multivariate version of Mercer’s theorem, which serves as the foundation of MFPCA (Chiou et al.,

2014; Happ and Greven, 2018), there exists an orthonormal basis consisting of eigenfunctions tφip¨qu8
i“1

of Σy and the associated eigenvalues τ1 ě τ2 ě ¨ ¨ ¨ ě 0 such that

Σypu, vq “

8
ÿ

i“1

τiφipuqφipvqT, pu, vq P U2, (15)

where the sum converges absolutely and uniformly in both u and v.

We now provide mathematical insights into why MFPCA can be applied for functional factor analysis

under model (2). To ensure the identifiability of the decomposition in (14), we impose a normalization-

type condition similar to Assumption 1.

Assumption 1'. Σγ “ Ir and p´1
ş

QpuqTQpuqdu “ diagpϑ1, . . . , ϑrq, where there exist some constants

ϑ ą ϑ ą 0 such that ϑ ą ϑ1 ą ϑ2 ą ¨ ¨ ¨ ą ϑr ą ϑ.

Suppose Assumption 1' holds, and let rq1p¨q, . . . , rqrp¨q be the normalized columns of Qp¨q such that

}rqj} “ 1 for j P rrs. By Lemma A.11 in the appendix, trqjp¨qujPrrs are the orthonormal eigenfunctions of

the kernel function Qp¨qQp¨qT with corresponding eigenvalues tpϑju
r
j“1 and the rest 0. We then give the

following proposition.
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Proposition 2. Suppose that Assumption 1' and }Σε}L “ oppq hold. Then we have

(i) |τj ´ pϑj | ď }Σε}L for j P rrs and |τj | ď }Σε}L for j P rpszrrs;

(ii) }φj ´ rqj} “ Opp´1}Σε}Lq for j P rrs.

Proposition 2 implies that, if we can prove }Σε}L “ oppq, then we can distinguish the principal

eigenvalues tτjujPrrs from the remaining eigenvalues. Additionally, the first r eigenfunctions tφjp¨qujPrrs

are approximately the same as the normalized columns of trqjp¨qujPrrs. To establish this, we impose the

same functional sparsity condition on Σε as measured by sp in (7). Applying Lemma A.7(iii) in the

appendix, we have }Σε}L ď }Σε}
1{2
S,1}Σε}

1{2
S,8 “ Opspq. Hence, when sp “ oppq, MFPCA is approximately

equivalent to functional factor analysis under model (2) for high-dimensional functional data.

We now present the estimation procedure assuming that r is known, and we will develop a ratio-based

approach to identify r in Section 2.3. Let τ̂1 ě τ̂2 ě ¨ ¨ ¨ ě 0 be the eigenvalues of the sample covariance

pΣ
S

y and tpφjp¨qu8
j“1 be their corresponding eigenfunctions. Then pΣ

S

y has the spectral decomposition

pΣ
S

y pu, vq “

r
ÿ

j“1

τ̂j pφjpuqpφjpvqT ` pRpu, vq,

where pRpu, vq “
ř8

j“r`1 τ̂j pφjpuqpφjpvqT is the functional principal orthogonal complement. Applying

AFT as introduced in Section 2.1 to pR yields the estimator pRA. We finally obtain a FPOET estimator as

pΣ
F

y pu, vq “

r
ÿ

j“1

τ̂j pφjpuqpφjpvqT ` pRApu, vq. (16)

It is noteworthy that, with Σy satisfying decompositions (5) and (14) under FFMs (1) and (2),

respectively, both DIGIT and FPOET methods embrace the fundamental concept of a “low-rank plus

sparse” representation generalized to the functional setting. Consequently, the common estimation steps

involve applying PCA or MFPCA to estimate the factor loadings, and applying AFT to estimate sparseΣε.

Essentially, these two methods are closely related, allowing the proposed estimators to exhibit empirical

robustness even in cases of model misspecification (See details in Section 5). See also Section S.5.2 of the

supplementary material for a discussion about the relationship between two FFMs.

We next present an equivalent representation of FPOET estimator (16) from a least squares perspec-

tive. We consider solving a constraint least squares minimization problem:

tpQp¨q, pΓu “ arg min
Qp¨q,Γ

ż

}Ypuq ´ QpuqΓT}2Fdu “ arg min
Qp¨q,γ1,...,γn

n
ÿ

t“1

}yt ´ Qγt}
2, (17)

subject to the normalization constraint corresponding to Assumption 1', i.e.,

1

n

n
ÿ

t“1

γtγ
T
t “ Ir and

1

p

ż

QpuqTQpuqdu is diagonal,

where Yp¨q “ ty1p¨q, . . . ,ynp¨qu and ΓT “ pγ1, . . . ,γnq. Given each Γ, setting the derivative of the

objective in (17) w.r.t. Qp¨q to zero, we obtain the constrained least squares estimator rQp¨q “ n´1Yp¨qΓ.

Plugging it into (17), the objective as a function of Γ becomes
ş

}Ypuq´n´1YpuqΓΓpuqT}2Fdu “
ş

tr
␣

pIn´

9



n´1ΓΓTqYpuqTYpuq
(

du, whose minimizer is equivalent to the maximizer of tr
“

ΓT
␣ ş

YpuqTYpuqdu
(

Γ
‰

.

This implies that the columns of n´1{2
pΓ are the eigenvectors corresponding to the r largest eigenvalues

of
ş

YpuqTYpuqdu P Rnˆn, and then pQp¨q “ n´1Yp¨qpΓ.

Let rεtp¨q “ ytp¨q ´ pQp¨qpγt and rΣεpu, vq “ n´1
řn

t“1 rεtpuqrεtpvqT. Applying our proposed AFT in (10)

to rΣε yields the estimator rΣ
A

ε . Analogous to the decomposition (14) under Assumption 1', we propose

the following substitution estimator

pΣ
L

y pu, vq “ pQpuqpQpvqT ` rΣ
A

ε pu, vq. (18)

The following proposition reveals the equivalence between the FPOET estimator (16) and the con-

strained least squares estimator (18).

Proposition 3. Suppose the same regularization parameters are used when applying AFT to pR and rΣε.

Then we have pΣ
F

y “ pΣ
L

y and pRA “ rΣ
A

ε .

Remark 2.6. (i) While our FFM (2) shares the same form as the model studied in Hallin et al. (2023);

Tavakoli et al. (2023), which focused on the estimation of scalar factors and functional loadings from a

least squares viewpoint, the main purpose of this paper lies in the estimation of large covariance matrix

function. Consequently, we also propose a least-squares-based estimator of Σy, which turns out to be

equivalent to our FPOET estimator by Proposition 3.

(ii) Using a similar procedure, we can also develop an alternative estimator for Σy under FFM (1) from

a least squares perspective. However, this estimator is distinct from the DIGIT estimator (12) and leads

to declined estimation efficiency. See detailed discussion in Section S.5.1 of the supplementary material.

2.3 Determining the number of factors

We have developed the estimation procedures for FFMs (1) and (2), assuming the known number of

functional or scalar factors (i.e., r). In this section, we take the frequently-used ratio-based approach

(Lam and Yao, 2012; Ahn and Horenstein, 2013) to determine the value of r.

For model (1), we let λ̂1 ě ¨ ¨ ¨ ě λ̂p be the ordered eigenvalues of pΩ in (8), and propose to estimate r

by

r̂D “ arg min
jPrr1,0s

λ̂j`1 ` ϑ1n

λ̂j ` ϑ1n

, (19)

where ϑ1n provides a lower bound correction to λ̂j for j ą r (Han et al., 2022) and satisfies Assumption 7

below, and r1,0 ą r is sufficiently large. For model (2), we employ a similar eigenvalue-ratio estimator:

r̂F “ arg min
jPrr2,0s

τ̂j`1 ` ϑ2n

τ̂j ` ϑ2n
, (20)

where ϑ2n provides a lower bound correction to τ̂j for j ą r and satisfies Assumption 7' below, tτ̂iu
8
i“1

represents the ordered eigenvalues of the sample covariance pΣ
S

y p¨, ¨q, and r2,0 ą r is sufficiently large. We

set ϑ1n “ crp
2n´4{5 and ϑ2n “ crpn

´4{5 for some cr ą 0 so that Assumptions 7 and 7' are satisfied. In

our empirical analysis, we choose cr “ 0.1, which consistently yields good finite-sample performance.
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2.4 Model selection criterion

A natural question that arises is which of the two candidate FFMs is more appropriate for modeling

ytp¨q. This section develops functional information criteria based on observed data for model selection.

When k functional factors are estimated under FFM (1), motivated from the least squares criterion

(9), we define the mean squared residuals as

V Dpkq “ ppnq´1
n
ÿ

t“1

}yt ´ p´1
pBk

pBT
kyt}

2,

where pBk is the estimated factor loading matrix by DIGIT. Analogously, when k scalar factors are

estimated under FFM (2), it follows from the objective function in (17) that the corresponding mean

squared residuals is

V Fpkq “ ppnq´1
n
ÿ

t“1

}yt ´ n´1YpΓkpγt,k}2,

where pΓ
T

k “ ppγ1,k, . . . , pγn,kq is formed by estimated factors using FPOET.

For any given k, we propose the following information criteria:

ICDpkq “ logtV Dpkqu ` kgDpp, nq and ICFpkq “ logtV Fpkqu ` kgFpp, nq, (21)

where ICDpkq and ICFpkq are represented as the sum of the log transformation of the average of squared

residuals and the penalty term with gDpp, nq and gFpp, nq being the corresponding penalty functions of

pp, nq to avoid overparameterization. While there is much existing literature (see e.g., Bai and Ng, 2002;

Fan et al., 2013) that has adopted this type of criterion for identifying the number of factors in scalar

factor models, we propose fully functional criteria for selecting the more appropriate FFM. Following Bai

and Ng (2002), we suggest three examples of the same penalty functions gDpp, nq “ gFpp, nq “ gpp, nq in

(21), referred to as IC1, IC2, and IC3, respectively,

piq gpp, nq “
p ` n

pn
log

ˆ

pn

p ` n

˙

, piiq gpp, nq “
p ` n

pn
logpp ^ nq, piiiq gpp, nq “

logpp ^ nq

p ^ n
.

For model selection, we define the information criterion difference between two FFMs as ∆ICi “ ICD
i pr̂Dq´

ICF
i pr̂Fq for i “ 1, 2, 3. The negative (or positive) values of ∆ICi’s indicate that FFM (1) (or FFM (2))

is more suitable based on the observed data tytp¨qu. See the model selection consistency guarantee in

Theorem 3 under mild requirements on penalty functions, which three examples of gpp, nq satisfy.

In general, instead of using the same penalty functions in ICD and ICF , we can employ different penalty

functions that satisfy the requirements of Theorem 3 from a model complexity perspective. Specifically,

considering the panel nature of the problem with an effective number of observations pn and assuming

each function has a complexity of sn, the effective total number of parameters for each model is calculated

as the total number of parameters minus the number of constraints in Assumption 1 or 1', which yields

kp`knsn´k2 for FFM (1) and kpsn`kn´k2 for FFM (2). Therefore, the feasible options for the penalty

functions are gDpp, nq “ pp`nsn´kq{pn and gFpp, nq “ ppsn`n´kq{pn. However, rigorously determining

sn remains an open question. Theoretically, by imposing specific requirements on sn, Theorem 3 can ensure
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the model selection consistency of ICD and ICF . In practice, one can select the leading sn eigenvalues of

the corresponding covariance functions such that the cumulative percentage exceeds a certain threshold

or adopt the eigenvalue-ratio-based method.

3 Theory

3.1 Assumptions

The assumptions for models (1) and (2) exhibit a close one-to-one correspondence. For clarity, we will

present them separately in a pairwise fashion.

Assumption 2. For model (1), tftp¨qutě1 and tεtp¨qutě1 are weakly stationary and Etεtipuqu “ Etεtipuqftjpvqu “

0 for all i P rps, j P rrs, and pu, vq P U2.

Assumption 2'. For model (2), tγtutě1 and tεtp¨qutě1 are weakly stationary and Etεtipuqu “ Etεtipuqγtju “

0 for all i P rps, j P rrs, and u P U .

Assumption 3. For model (1), there exists some constant C ą 0 such that, for all j P rrs, t P rns, (i)

}bj}max ă C; (ii) E}p´1{2BTεt}
2 ă C; (iii) }Σε}L ă C; (iv) maxiPrps }Σε,ii}N ă C.

Assumption 3'. For model (2), there exists some constant C 1 ą 0 such that, for all i P rps, t, t1 P rns: (i)

}qi} ă C 1; (ii) E}p´1{2
ş

QpuqTεtpuqdu}2 ă C 1and E|p´1{2txεt, εt1y ´ Exεt, εt1yu|4 ă C 1; (iii) }Σε}L ă C 1;

(iv) maxiPrps }Σε,ii}N ă C 1.

Assumption 3(i) or 3'(i) requires the functional or scalar factors to be pervasive in the sense they

influence a large fraction of the functional outcomes. Such pervasiveness-type assumption is commonly

imposed in the literature (Bai, 2003; Fan et al., 2013). Assumptions 3(ii) and 3'(ii) involve weaker moment

constraints compared to Fan et al. (2013) and are needed to estimate factors and loadings consistently.

Assumption 3(iii) and 3'(iii) generalize the standard conditions for scalar factor models (Fan et al., 2013;

Wang et al., 2021) to the functional domain. Assumptions 3(iv) and 3'(iv) are for technical convenience.

However we can relax them by allowing maxi }Σε,ii}N to grow at some slow rate as p increases.

We use the functional stability measure (Chang et al., 2024) to characterize the serial dependence.

For tytp¨qu, denote its autocovariance matrix functions by Σ
phq
y pu, vq “ Covtytpuq,yt`hpvqu for h P Z

and pu, vq P U2 and its spectral density matrix function at frequency θ P r´π, πs by fy,θpu, vq “

p2πq´1
ř

hPZΣ
phq
y pu, vq expp´ihθq. The functional stability measure of tytp¨qu is defined as

My “ 2π ¨ ess sup
θPr´π,πs,ϕPHp

0

xϕ, fy,θpϕqy

xϕ,Σypϕqy
, (22)

where Σypϕqp¨q “
ş

U Σyp¨, vqϕpvqdv and Hp
0 “ tϕ P Hp : xϕ,Σypϕqy P p0,8qu. When y1p¨q, . . . ,ynp¨q are

independent, My “ 1. See also Guo and Qiao (2023) for examples satisfying My ă 8, such as functional

moving average model and functional linear process. Similarly, we can define Mε of tεtp¨qu, Mf of tftp¨qu

and Mγ of scalar time series tγtu (Basu and Michailidis, 2015). To derive exponential-type tails used in

convergence analysis, we assume the sub-Gaussianities for functional (or scalar) factors and idiosyncratic

components. We relegate the definitions of sub-Gaussian (functional) process and multivariate (functional)

linear process to Section S.5.3 of the supplementary material.
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Assumption 4. For model (1), (i) tftp¨qutPrns and tεtp¨qutPrns follow sub-Gaussian functional linear pro-

cesses; (ii) Mf ă 8,Mε ă 8 and M2
ε log p “ opnq.

Assumption 4'. For model (2), (i) tγtutPrns follows sub-Gaussian linear process and tεtp¨qutPrns follows

sub-Gaussian functional linear process; (ii) Mγ ă 8,Mε ă 8 and M2
ε log p “ opnq.

Assumption 5. There exists some constant τ ą 0 such that mini,jPrps }Varpεtiεtjq}S ě τ.

Assumption 6. The pair pn, pq satisfies M2
ε log p “ opn{ log nq and log n “ oppq.

Assumption 7. ϑ1np
´2 Ñ 0, ϑ1nM´2

ε p´2n Ñ 8 and ϑ1n Ñ 8, where ϑ1n is specified in (19).

Assumption 7'. ϑ2np
´1 Ñ 0, ϑ2nM´2

ε p´1n Ñ 8 and ϑ2np Ñ 8, where ϑ2n is specified in (20).

Assumption 8. For model (1), (i) there exists some constant ω ą 0 such that ω1 ě ω2 ě ¨ ¨ ¨ ě ωr2,0`1 ě

ω, where tωiu
8
i“1 are the ordered eigenvalues of Σf p¨, ¨q and r2,0 is given in (20); (ii) }Σε}N “ oppq.

Assumption 8'. For model (2), (i) rank
␣ ş

QpuqQpuqTdu
(

ě r1,0 ` 1, where r1,0 is given in (19); (ii)

}Σε}N “ oppq.

Assumption 5 is required when implementing AFT, however, it is weaker than the similar assumption

infpu,vqPU2 mini,jPrps Varrεtipuqεtjpvqs ě τ imposed in Fang et al. (2024). Assumption 6 allows the high-

dimensional case, where p grows exponentially as n increases. Assumptions 7 and 7' on the lower bound

correlations (i.e., ϑ1n and ϑ2n) are imposed to ensure the consistency of ratio-based estimators for the

number of factors. Both assumptions are satisfied by setting ϑ1n — p2n´ρ and ϑ2n — pn´ρ when Mε “

Op1q and nρ “ opp2q for ρ P p0, 1q. Assumptions 8 and 8' are needed when establishing the model selection

consistency for the proposed information criteria. For model (1), Assumption 8(i) implies that the common

covariance Σχp¨, ¨q “ BΣf p¨, ¨qBT has at least r2,0 ` 1 nonzero eigenvalues of order p, which cannot be

recovered by the FPOET estimator with r̂F ď r2,0 factors. Similarly, for model (2), Assumption 8'(i)
implies that

ş ş

Σκpu, vqΣκpu, vqTdudv “
ş

QpuqQpuqTdu (which holds under Assumption 1') has at least
r1,0 `1 nonzero eigenvalues of order p2, which cannot be recovered by the DIGIT estimator with r̂D ď r1,0

factors. To guarantee the asymptotic identifiability of the respective FFMs for model selection, we require

Assumptions 8(ii) and 8'(ii) to hold for tεtp¨qu.

3.2 Convergence of estimated loadings and factors

While the main focus of this paper is to estimate Σy, the estimation of factors and loadings remains

a crucial aspect, encompassed by DIGIT and FPOET estimators, as well as in many other applications.

We first present various convergence rates of estimated factors and loading matrix when implementing

DIGIT. For the sake of simplicity, we denote

ϖn,p “ Mε

a

log p{n ` 1{
?
p.

Theorem 1. Suppose that Assumptions 1–4 hold. Then there exists an orthogonal matrix U P Rrˆr such

that (i) }pB´BUT}max “ Op pϖn,pq ; (ii) n´1
řn

t“1 }pft´Uft}
2 “ OppM2

ε{n`1{pq; (iii) maxtPrns }pft´Uft} “

Op

`

Mε

a

log n{n `
a

log n{p
˘

.
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The orthogonal matrix U above is needed to ensure that bT
j
pbj ě 0 for each j P rrs. Provided that

pBUUT
pft “ pBpft, the estimation of the common components and Σy remain unaffected by the choice of

U. By Theorem 1, we can derive the following corollary, which provides the uniform convergence rate of

the estimated common component. Let b̆i and

p

bi denote the i-th rows of B and pB, respectively.

Corollary 1. Under the assumptions of Theorem 1, we have maxiPrps,tPrns }

p

b
T

i
pft ´ b̆T

i ft} “ Oppϱq, where

ϱ “ Mε

a

log n log p{n `
a

log n{p.

In the context of FPOET estimation of factors and loadings, we require an additional asymptotically

orthogonal matrix H such that pγt is a valid estimator of Hγt. Differing from DIGIT, we follow Bai (2003)

to construct H in a deterministic form. Let V P Rrˆr denote the diagonal matrix of the first r largest

eigenvalues of pΣ
S
y in a decreasing order. Define H “ n´1V´1

pΓ
T

Γ
ş

QpuqTQpuqdu. By Lemma S.6 of the

supplementary material, H is asymptotically orthogonal such that Ir “ HTH ` opp1q “ HHT ` opp1q.

Theorem 1'. Suppose that Assumptions 1'–4' hold. (i) n´1
řn

t“1 }pγt ´ Hγt}
2 “ Op

`

M2
ε{n ` 1{p

˘

; (ii)

maxtPrns }pγt ´ Hγt} “ Op

`

Mε{
?
n `

a

log n{p
˘

; (iii) maxiPrps }pqi ´ Hqi} “ Oppϖn,pq.

Corollary 1'. Under the assumptions of Theorem 1', we have maxiPrps,tPrns }pqT
i pγt´qT

i γt} “ Oppϱq, where

ϱ is specified in Corollary 1.

WhenMε “ Op1q, the convergence rates presented in Theorem 1(i), (ii) for model (1) are, respectively,

consistent to those established in Fan et al. (2013) and Bai and Ng (2002), and the uniform convergence

rates presented in Theorem 1(iii) and Corollary 1 are faster than those established in Fan et al. (2013).

Additionally, the rates in Theorem 1' and Corollary 1' for model (2) align with those in Theorem 1 and

Corollary 1. These uniform convergence rates are essential not only for estimating the FFMs but also for

many subsequent high-dimensional learning tasks.

Theorem 2. (i) Under Assumptions 1–4 and 7, Ppr̂D “ rq Ñ 1 as p, n Ñ 8, where r̂D is defined in (19).

(ii) Under Assumptions 1'–4' and 7', Ppr̂F “ rq Ñ 1 as p, n Ñ 8, where r̂F is defined in (20).

Theorem 3. Suppose that gpp, nq Ñ 0 and pM2
ε{n`1{pq´1gpp, nq Ñ 8 as p, n Ñ 8 for both penalty func-

tions gDpp, nq and gFpp, nq in (21). Then, (i) under Assumptions 1–4, 7 and 8, P
␣

ICDpr̂Dq ă ICFpr̂Fq
(

Ñ

1 as p, n Ñ 8; (ii) under Assumptions 1'–4', 7' and 8', P
␣

ICDpr̂Dq ą ICFpr̂Fq
(

Ñ 1 as p, n Ñ 8.

Remark 3.1. With the aid of Theorems 2 and 3, our estimators explored in Sections 3.2 and 3.3 are

asymptotically adaptive to the number of factors and the data-generating model. To see this, consider, e.g.,

model (2), and let pκti,r̂p¨q be the estimated common component, and pγt,r̂ and pqi,r̂p¨q be constructed using r̂F

estimated scalar factors and functional loadings. Then, for any constant c̃ ą 0,P
`

ϱ´1maxiPrps,tPrns }pκti,r̂ ´

κti} ą c̃
˘

ď P
␣

ϱ´1maxiPrps,tPrns }pqT
i pγt´qT

i γt} ą c̃|r̂F “ r, ICDpr̂Dq ą ICFpr̂Fq
(

`Ppr̂F ‰ rq`P
␣

ICDpr̂Dq ď

ICFpr̂Fq
(

, which, combined with Corollary 1', implies that maxiPrps,tPrns }pκti,r̂ ´ κti} “ Oppϱq. Similar

arguments can be applied to other estimated quantities in Sections 3.2 and 3.3. Therefore, we assume that

the number of factors and data-generating model are known in our asymptotic results.

3.3 Convergence of estimated covariance matrix functions

Estimating the idiosyncratic covariance matrix function Σε is important in factor modeling and sub-

sequent learning tasks. With the help of functional sparsity as specified in (7), we can obtain consistent
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estimators of Σε under functional matrix ℓ1 norm } ¨ }S,1 in the high-dimensional scenario. The following

rates of convergence based on estimated idiosyncratic components are consistent with the rate based on

direct observations of independent functional data (Fang et al., 2024) when Mε “ Op1q and p log p Á n.

Theorem 4. Suppose that Assumptions 1–6 hold. Then, for a sufficiently large constant 9C in (10),

}pΣ
A

ε ´ Σε}S,1 “ Oppϖ1´q
n,p spq.

Theorem 4'. Suppose that Assumptions 1'–4', 5, 6 hold. Then, for a sufficiently large constant 9C in

(10), }pRA ´ Σε}S,1 “ Oppϖ1´q
n,p spq.

When assessing the convergence criteria for our DIGIT and FPOET estimators, it is crucial to note

that functional matrix norms such as } ¨ }S,1 and } ¨ }L are not suitable choices. This is because pΣy

may not converge to Σy in these norms for high-dimensional functional data, unless specific structural

assumptions are directly imposed onΣy. This issue does not arise from the poor performance of estimation

methods but rather from the inherent limitation of high-dimensional models. To address this, we present

convergence rates in functional elementwise ℓ8 norm } ¨ }S,max.

Theorem 5. Under the assumptions of Theorem 4, we have }pΣ
D

y ´ Σy}S,max “ Oppϖn,pq.

Theorem 5'. Under the assumptions of Theorem 4', we have }pΣ
F

y ´ Σy}S,max “ Oppϖn,pq.

Remark 3.2. (i) The convergence rates of DIGIT and FPOET estimators (we use pΣy to denote both)

comprise two terms. The first term OppMε

a

log p{nq arises from the rate of pΣ
S

y , while the second term

Oppp´1{2q primarily stems from the estimation of unobservable factors. When Mε “ Op1q, our rate aligns

with the result obtained in Fan et al. (2013).

(ii) Compared to pΣ
S

y , we observe that using a factor-guided approach results in the same rate in } ¨ }S,max

as long as p log p Á n. Nevertheless, our proposed estimators offer several advantages. First, under a

functional weighted quadratic norm introduced in Section 4.1, which is closely related to functional risk

management, pΣy converges to Σy in the high-dimensional case (see Theorem 7), while pΣ
S

y does not

achieve this convergence. Second, as evidenced by empirical results in Sections 5 and 6, pΣy significantly

outperforms pΣ
S

y in terms of various functional matrix losses.

Finally, we explore convergence properties of the inverse covariance matrix function estimation. Based

on Section 3.5 of Hsing and Eubank (2015), although the inverse operator Σ´1
y may not be well-defined,

we instead use the Moore–Penrose inverse. Denote the null space of Σy and its orthogonal complement by

KerpΣyq “ tx P Hp : Σypxq “ 0u and KerpΣyq
K

“ tx P Hp : xx,yy “ 0,@y P KerpΣyqu, respectively. Let

rΣy be the restriction of Σy to KerpΣyqK. By Definition 3.5.7 of Hsing and Eubank (2015), the Moore–

Penrose inverse of Σy is defined as Σ:
ypxq “ rΣ

´1

y pxq for x P ImpΣyq and 0 for x P ImpΣyqK. The similar

definition applies to the Moore–Penrose inverses of other covariance matrix operators. To obtain the

inverse DIGIT estimator, we assume KerpΣεq “ KerpBΣfB
Tq, which implies that KerpΣεq “ KerpΣyq,

and rΣy, rΣε and BrΣfB
T are all invertible on KerpΣyqK. We then rely on (5) to apply Sherman–Morrison–

Woodbury formula (Theorem 3.5.6 of Hsing and Eubank (2015)) to obtain its inverseΣ:
y “ Σ:

ε´Σ:
εB

`

Σ:

f`

BTΣ:
εB

˘:
BTΣ:

ε, and the plug-in inverse DIGIT estimator is ppΣ
D

y q: “ pΣ
:

ε ´ pΣ
:

ε
pB
`

pΣ
:

f ` pBT
pΣ

:

ε
pB
˘:
pBT

pΣ
:

ε.

The plug-in inverse FPOET estimator ppΣ
F

y q: can be defined similarly by assuming that KerpΣεq “

KerpQΣγQ
Tq. To make ppΣ

D

y q: and ppΣ
F

y q: meaningful inverse covariance matrix estimators, we focus on

15



finite-dimensional functional objects tytp¨qutPrns, i.e., }Σ:
y}L is bounded. Then, both the inverse DIGIT

and FPOET estimators are consistent in the operator norm, as presented in the following theorems.

Theorem 6. Suppose that the assumptions of Theorem 5 hold, ϖ1´q
n,p sp “ op1q, KerpΣεq “ KerpBΣfB

Tq,

and both }Σ:
ε}L and }Σ:

f }L are bounded. Then, pΣ
D

y has a bounded Moore–Penrose inverse with probability

approaching one, and
›

›ppΣ
D

y q: ´ Σ:
y

›

›

L “ Oppϖ1´q
n,p spq.

Theorem 6'. Suppose that the assumptions of Theorem 5' hold, ϖ1´q
n,p sp “ op1q, KerpΣεq “ KerpQΣγQ

Tq,

and }Σ:
ε}L is bounded. Then, pΣ

F

y has a bounded Moore–Penrose inverse with probability approaching one,

and
›

›ppΣ
F

y q: ´ Σ:
y

›

›

L “ Oppϖ1´q
n,p spq.

Remark 3.3. (i) The condition that }Σ:
ε}L and }Σ:

f }L are bounded implies that }Σ:
y}L is bounded,

which means that Σy has a finite number of nonzero eigenvalues, denoted as d ă 8. Then Σypu, vq “
řd

i“1 τiφipuqφipvqT with its inverse Σ:
ypu, vq “

řd
i“1 τ

´1
i φipuqφipvqT. While the inverse of pΣ

S

y fails to ex-

hibit convergence even though it operates within finite-dimensional Hilbert space, our factor-guided methods

can achieve such convergence. It should be noted that d can be made arbitrarily large relative to n, e.g.,

d “ 2000, n “ 200. Hence, this finite-dimensional assumption does not place a practical constraint on our

method. See applications of inverse covariance matrix function estimation in Sections 4.1 and 4.2.

(ii) An example that satisfies KerpΣεq “ KerpBΣfB
Tq is Σεpu, vq “

řd
j“1 λjψjpuqψjpvqT and Σf pu, vq “

řd
j“1 ωjϕjpuqϕjpvqT, where λj ą 0 and ωj ą 0 for j P rds and spantψjp¨qujPrds “ spantBϕjp¨qujPrds. While

the existing literature has not explored the convergence properties of high-dimensional inverse covariance

operators, our papers makes a first attempt within the functional factor modeling framework by assuming

the finite-dimensional functional objects and the same spaces spanned by the corresponding eigenfunctions.

We leave the possible relaxation of these conditions as future research.

(iii) Within infinite-dimensional Hilbert space, the inverse operator Σ:
ypu, vq “

ř8
i“1 τ

´1
i φipuqφipvqT be-

comes an unbounded operator, which is discontinuous and cannot be estimated in a meaningful way.

However, Σ:
y is usually associated with another function/operator, and the composite function/operator

in KerpΣyqK can reasonably be assumed to be bounded, such as regression function/operator and discrim-

inant direction function in Section 4.2. Specifically, consider the spectral decomposition (15), which is

truncated at d ă 8, i.e., Σy,dpu, vq “
řd

i“1 τiφipuqφipvqT. Under certain smoothness conditions, such as

those on coefficient functions in multivariate functional linear regression (Chiou et al., 2016), the im-

pact of truncation errors through
ř8

i“d`1 τ
´1
i φipuqφipvqT on associated functions/operators is expected to

diminish, ensuring the boundedness of composite functions/operators. Consequently, the primary focus

shifts towards estimating the inverse of Σy,d, and our results in Theorems 6 and 6' become applicable.

Upon observation, a remarkable consistency is evident between DIGIT and FPOETmethods developed

under different models in terms of imposed regularity assumptions and associated convergence rates,

despite the substantially different proof techniques employed.

4 Applications

4.1 Functional risk management

One main task of risk management in the stock market is to estimate the portfolio variance, which

can be extended to the functional setting to account for the intraday uncertainties. Consider a port-

folio consisting of p stocks. Let Ptp¨q “ tPt1p¨q, . . . , Ptpp¨quT,Ztp¨q “ tZt1p¨q, . . . , Ztpp¨quT and rwtp¨q “
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t rwt1p¨q, . . . , rwtpp¨quT, where Ptipuq, Ztipuq and rwtipuq “ ZtipuqPtipuq respectively denote the price per-

share, the quantity held, and the amount of money held for the i-th stock at time u on the t-th trading

day. We assume that U “ r0, 1s and rwtp0qT1p “ 1, where 1p “ p1, . . . , 1qT P Rp, meaning that the initial

portfolio amount is normalized to facilitate subsequent analysis. Then, the functional portfolio return of

the t-th day is

@

Zt,∇Pt

D

“

ż 1

0

rwtpuqT∇tlogPtpuqudu “ rwtpuqT logtPtpuqu
ˇ

ˇ

1

0
´
@

∇rwt, logpPtq
D

“ rwtp1qTytp1q ´
@

∇rwt,yt

D

, (23)

where ytpuq “ logtPtpuqu ´ logtPtp0qu, u P r0, 1s turns to be the cumulative intraday return (CIDR)

trajectory as defined in Horváth et al. (2014). As discussed in Lou et al. (2019), the close-to-close return

of the stock can be decomposed into overnight and intraday components, and the profits of popular trading

strategies are either earned entirely overnight or entirely intraday. Since the CIDR trajectories are only

recorded during the trading period, our functional risk management focuses on the intraday strategy, where

assets are bought and sold within the same day to profit from short-term price movements, so we close out

all positions by the end of the trading day with rwtp1q “ 0. By (23), the functional portfolio return of the

t-th day is rt “ xwt,yty with wtp¨q “ ´∇rwtp¨q. If wtipuq “ ´∇ rwtipuq ą 0 (or ă 0), it indicates that an

amount wtipuq of the i-th stock is sold (or bought) at time u. The amount held in each stock at the opening

is determined by rwtp0q “
ş1
0 wtpuqdu. The constraint onwtp¨q is

ş1
0 wtpuqT1pdu “ rwtp0qT1p´rwtp1qT1p “ 1,

and hence wtp¨q can be viewed as the functional portfolio allocation vector. Despite being formulated

within a functional framework, the practical implementation can be achieved through discretization, such

as at intervals of every 5 or 10 minutes. The functional portfolio variance of the t-th day is calculated as

Varprtq “ xwt,Σypwtqy. For a more general rwtp1q, the corresponding functional portfolio variance involves

the cross-covariance between two terms in (23), which largely complicates functional risk management

and is left for future research.

For a givenwp¨q, the true and perceived variances (i.e., risks) of the functional portfolio are xw,Σypwqy

and xw, pΣypwqy, respectively. According to Proposition S.1 of the supplementary material, the estimation

error of the functional portfolio variance is bounded by

ˇ

ˇxw, pΣypwqy ´ xw,Σypwqy
ˇ

ˇ ď }pΣy ´ Σy}S,max

`

p
ÿ

i“1

}wi}
˘2
,

in which Theorems 5 and 5' quantify the maximum approximation error }pΣy ´ Σy}S,max.

In addition to the absolute error between perceived and true risks, we are also interested in quantifying

the relative error. To this end, we introduce the functional version of weighted quadratic norm (Fan et al.,

2008), defined as }K}S,Σy “ p´1{2}pΣ:
yq1{2KpΣ:

yq1{2}S,F, where K P Hp bHp and the normalization factor

p´1{2 serves the role of }Σy}S,Σy “ 1. To ensure the validity of this functional norm, we assume that

Σy has a bounded inverse, which does not place a constraint in practice (see Remark 3.3(i)). With such

functional norm, the relative error can be measured by

p´1{2
›

›pΣ:
yq1{2

pΣypΣ:
yq1{2 ´ Ĩp

›

›

S,F “
›

›pΣy ´ Σy

›

›

S,Σy
, (24)
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where Ĩp is defined as Ĩppxq “ x for x P ImpΣyq and 0 for x P ImpΣyqK. Provided that }pΣ
S

y ´ Σy}S,Σy “

OppMε

a

p{nq, the sample covariance fails to converge in } ¨ }S,Σy under the high-dimensional setting with

p ą n. On the contrary, the following theorem reveals that our DIGIT estimator pΣ
D

y converges to Σy as

long as M4
εp “ opn2q and ϖ1´q

n,p sp “ op1q. The same result can also be extended to the FPOET estimator.

Theorem 7. Under the assumptions of Theorem 6, we have }pΣ
D

y ´Σy}S,Σy “ Op

`

M2
εp

1{2n´1 `ϖ1´q
n,p sp

˘

.

By Proposition S.2 of the supplementary material, the relative error is bounded by

ˇ

ˇxw, pΣypwqy{xw,Σypwqy ´ 1
ˇ

ˇ ď
›

›pΣ:
yq1{2

pΣypΣ:
yq1{2 ´ Ĩp

›

›

L,

which, in conjunction with Theorem 7 and (24), controls the maximum relative error.

4.2 Estimation of regression and discriminant direction functions

The second application explores multivariate functional linear regression (Chiou et al., 2016), which

involves a scalar response zt or a functional response

ztpvq “
@

yt,βp¨, vq
D

` etpvq, v P V,

where βp¨, ¨q “ tβ1p¨, ¨q, . . . , βpp¨, ¨quT is an operator-valued coefficient vector to be estimated. We can

impose certain smoothness condition such that βpu, vq “
ř8

i“1 τ̃iφipuqφipvqT is sufficiently smooth rel-

ative to Σypu, vq “
ř8

i“1 τiφipuqφipvqT, ensuring the boundedness of the regression operator βpu, vq “
ş

U Σ:
ypu, u1qCovtytpu

1q, ztpvqudu1. Replacing relevant terms by their (truncated) sample versions, we ob-

tain pβpu, vq “ n´1
řn

t“1

ş

U
pΣ

:

y,dpu, u1qytpu
1qztpvqdu1. This application highlights the need for estimators

pΣ
:

y,d, as studied in Theorems 6 and 6'.
The third application delves into linear discriminant analysis for classifying multivariate functional

data (Xue et al., 2024) with class labels wt “ t1, 2u. Specifically, we assume that ytp¨q|wt “ 1 and

ytp¨q|wt “ 2 follow multivariate Gaussian distributions with mean functions µ1p¨q and µ2p¨q, respectively,

while sharing a common covariance matrix function Σy. Our goal is to determine the linear classifier by

estimating the discriminant direction function
ş

U Σ:
ypu, vqtµ1pvq ´ µ2pvqudv, which takes the same form

as the regression function βpuq “
ş

U Σ:
ypu, vqCovtytpvq, ztudv encountered in the second application with

a scalar response zt. By similar arguments as above, both applications call for the use of estimators pΣ
:

y,d.

4.3 Estimation of correlation matrix function

The fourth application involves estimating the correlation matrix function and its inverse, which

are essential in graphical models for truly infinite-dimensional objects, see, e.g., Solea and Li (2022).

Our proposed covariance estimators can be employed to estimate the corresponding correlation matrix

function and its inverse. Specifically, let Dyp¨, ¨q “ diagtΣy,11p¨, ¨q, . . . ,Σy,ppp¨, ¨qu be the p ˆ p diagonal

matrix function. According to Baker (1973), there exists a correlation matrix function Cy with }Cy}L ď 1

such that Σy “ D
1{2
y CyD

1{2
y . Under certain compactness and smoothness assumptions, Cy has a bounded

inverse, denoted by Θy, and its functional sparsity pattern corresponds to the network (i.e., conditional

dependence) structure among p components in ytp¨q; see Solea and Li (2022). Although the inverse of

the estimator pDy “ diagppΣy,11, . . . , pΣy,ppq is not well-defined, we adopt the Tikhonov regularization to

estimate Cy by pC
pκq
y “ ppDy ` κIpq´1{2

pΣyppDy ` κIpq´1{2 for some regularization parameter κ ą 0. The
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estimator of Θy is then given by pΘ
pκq

y “ pD
1{2
y ppΣy`κIpq´1

pD
1{2
y . Consequently, we can plug into the DIGIT

or the FPOET estimator for estimating Cy and its inverse Θy.

5 Simulations

For the first data-generating process (denoted as DGP1), we generate observed data from model

(1), where the entries of B P Rpˆr are sampled independently from Uniformr´0.75, 0.75s, satisfying

Assumption 3(i). To mimic the infinite-dimensionality of functional data, each functional factor is gen-

erated from ftjp¨q “
ř50

i“1 i
´1ξtjiϕip¨q for j P rrs over U “ r0, 1s, where tϕip¨qu50i“1 is a 50-dimensional

Fourier basis and basis coefficients ξti “ pξt1i, . . . , ξtriq
T are generated from a vector autoregressive model,

ξti “ Aξt´1,i ` uti with A “ tAjk “ 0.4|j´k|`1urˆr, and the innovations tutiutPrns being sampled in-

dependently from N p0r, Irq. For the second data-generating process (denoted as DGP2), we generate

observed data from model (2), where r-vector of scalar factors γt is generated from a vector autoregres-

sive model, γt “ Aγt´1 ` ut with tututPrns being sampled independently from N p0r, Irq. The functional

loading matrix Qp¨q “ tQjkp¨qupˆr is generated by Qjkp¨q “
ř50

i“1 i
´1qijkϕip¨q, where each qijk is sampled

independently from the N p0, 0.32q, satisfying Assumption 3'(i).
The idiosyncratic components are generated from εtp¨q “

ř25
l“1 2

´l{2ψtlϕlp¨q, where each ψtl is gener-

ated from ψtl “ 0.5ψt´1,l ` ζtl with ζtl being independently sampled from N p0p,Cζq with Cζ “ DC0D.

Given this autoregressive structure, it can be shown that Mε “ Op1q. Here, we set D “ diagpD1, . . . , Dpq,

where each Di is generated from Gammap3, 1q. The generation of C0 involves the following three steps:

(i) we set the diagonal entries of C̆ to 1, and generate the off-diagonal and symmetrical entries from

Uniformr0, 0.5s; (ii) we employ hard thresholding (Cai and Liu, 2011) on C̆ to obtain a sparse matrix

C̆T , where the threshold level is found as the smallest value such that maxiPrps

řp
j“1 IpC̆T

ij ‰ 0q ď p1´α

for α P r0, 1s; (iii) we set C0 “ C̆T ` δ̃Ip where δ̃ “ maxt´λminpC̆q, 0u ` 0.01 to guarantee the positive-

definiteness ofC0. The parameter α controls the sparsity level with larger values yielding sparser structures

in C0 as well as functional sparser patterns in Σεp¨, ¨q. This is implied from Proposition S.3(iii) of the

supplementary material, whose parts (i) and (ii) respectively specify the true covariance matrix functions

of ytp¨q for DGP1 and DGP2.

We firstly assess the finite-sample performance of the proposed information criteria in Section 2.4

under different combinations of p, n and α for DGP1 and DGP2. Figure 1 presents boxplots of ∆ICi

(i “ 1, 2, 3) for two DGPs under the setting p “ 100, n “ 50, α “ 0.25, 0.5 and r “ 3, 5, 7. See also similar

results for p “ 100, n “ 50, α “ 0.05, 0.1 in Figure S.1 and the corresponding model selection accuracies

in Table S.1 of the supplementary material. We observe a few trends. First, the proposed criteria can lead

to high model selection accuracies in all cases. Second, larger values of α lead to improved model selection

accuracy, as they correspond to a higher relative strength of the common components over idiosyncratic

components, quantified by }Σχ}S,F{}Σε}S,F Á pα{2 for DGP 1 and }Σκ}S,F{}Σε}S,F Á pα{2 for DGP 2.

Third, different penalty functions gpn, pq have similar impacts on the information criteria when p and n

are relatively large.

Once the more appropriate FFM is selected based on observed data, our next step adopts the ratio-

based estimator (19) (or (20)) to determine the number of functional (or scalar) factors. The performance

of proposed estimators is then examined in terms of their abilities to correctly identify the number of

factors. When implementing (19) and (20), we choose cr “ 0.1 and r1,0 “ r2,0 “ 20. Additional

19
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Figure 1: The boxplots of ∆ICi (i P r3s) for DGP1 and DGP2 with p “ 100, n “ 50, α “ 0.25, 0.5 and r “ 3, 5, 7
over 1000 simulation runs.

Table 1: The average relative frequency estimates for Ppr̂ “ rq over 1000 simulation runs.

r “ 3 r “ 5 r “ 7
α p n Ppr̂D

“ rq Ppr̂F
“ rq Ppr̂D

“ rq Ppr̂F
“ rq Ppr̂D

“ rq Ppr̂F
“ rq

0.25
100

100 0.674 0.632 0.468 0.449 0.331 0.355
200 0.757 0.726 0.622 0.571 0.466 0.483

200
100 0.757 0.647 0.563 0.430 0.345 0.319
200 0.846 0.797 0.717 0.668 0.560 0.521

0.50
100

100 0.881 0.893 0.815 0.819 0.640 0.743
200 0.936 0.921 0.891 0.908 0.805 0.828

200
100 0.977 0.953 0.910 0.911 0.778 0.836
200 0.970 0.962 0.954 0.958 0.898 0.928

0.75
100

100 0.974 0.983 0.947 0.963 0.899 0.929
200 0.979 0.985 0.975 0.978 0.951 0.971

200
100 0.999 0.997 0.989 0.998 0.945 0.980
200 0.997 0.999 0.998 1.000 0.992 0.997

simulations suggest that the results are not sensitive to the choice of r1,0 and r2,0, and a small value of cr

leads to good performance. Table 1 reports average relative frequencies r̂ “ r under different combinations

of r “ 3, 5, 7, n “ 100, 200, p “ 100, 200 and α “ 0.25, 0.5, 0.75 for both DGPs. Several conclusions can

be drawn. First, for fixed p and n, larger values of α enhance the accuracy of identifying r. Second, we

observe the phenomenon of “blessing of dimensionality” in the sense that the estimation improves as p

increases, which is due to the increased information from added components on the factors.

We next compare our proposed AFT estimator in (10) with two related methods for estimating

the idiosyncratic covariance Σε, where the details can be found in Section S.6 of the supplementary

material. Following Fan et al. (2013), the threshold level under hard thresholding for AFT is selected as

λ “ 9Cp
a

log p{n ` 1{
?
pq with 9C “ 0.5. To select the optimal 9C, we also implemented a cross-validation

method over a candidate set, whose lower bound was determined in a way similar to (4.1) of Fan et al.

(2013) to ensure the positive definiteness of the AFT estimators. However, such method incurred heavy
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Figure 2: The average losses of pΣy in functional elementwise ℓ8 norm (left column), Frobenius norm (middle
column) and matrix ℓ1 norm (right column) for DGP1 over 1000 simulation runs.

computational costs and only gave a very slight improvement. We finally compare our DIGIT and FPOET

estimators with two competing methods for estimating the covariance Σy. The first competitor is the

sample covariance estimator pΣ
S

y . For comparison, we also implement the method of Guo et al. (2025)

in conjunction with our AFT (denoted as GQW). This combined method employs autocovariance-based

eigenanalysis to estimate B and then follows the similar procedure as DIGIT to estimate ftp¨q and Σε.

Although DIGIT and GQW estimators (or FPOET estimator) are specifically developed to fit model

(1) (or model (2)), we also use them (or it) for estimating Σy under DGP2 (or DGP1) to evaluate the

robustness of each proposal under model misspecifications. For both DGPs, we set α “ 0.5 and generate

n “ 60, 80, . . . , 200 observations of p “ 50, 100, 150, 200 functional variables. Figures 2 and 3 display the

numerical summaries of losses measured by functional versions of elementwise ℓ8 norm, Frobenius norm,

and matrix ℓ1 norm for DGP1 and DGP2, respectively.

A few trends are observable. First, for DGP1 (or DGP2) in Figure 2 (or Figure 3), the DIGIT

(or FPOET) estimator outperforms the three competitors under almost all functional matrix losses and

settings. In high-dimensional large p scenarios, the factor-guided estimators lead to more competitive

performance, whereas the results of pΣ
S

y severely deteriorate especially in terms of functional matrix ℓ1

loss. Second, although both DIGIT and GQW estimators are developed to estimate model (1), our

proposed DIGIT estimator is prominently superior to the GQW estimator for DGP1 under all scenarios,

as seen in Figure 2. Third, the FPOET estimator exhibits enhanced robustness compared to DIGIT
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Figure 3: The average losses of pΣy in functional elementwise ℓ8 norm (left column), Frobenius norm (middle
column) and matrix ℓ1 norm (right column) for DGP2 over 1000 simulation runs.

and GQW estimators in the case of model misspecification. In particular, for DGP2, DIGIT and GQW

show substantial decline in performance measured by functional Frobenius and matrix ℓ1 losses, while,

for DGP1, FPOET still achieves reasonably good performance.

6 Real data analysis

Our dataset, collected from https://wrds-www.wharton.upenn.edu/, consists of high-frequency ob-

servations of prices for a collection of S&P100 stocks from 251 trading days in the year 2017. We removed

2 stocks with missing data so p “ 98 in our analysis. We obtain five-minute resolution prices by using

the last transaction price in each five-minute interval after removing the outliers, and hence convert the

trading period (9:30–16:00) to U “ r0, 1s. We construct CIDR (Horváth et al., 2014) trajectories, in per-

centage, by ytipukq “ 100rlogtPtipukqu ´ logtPtipu0qus, where Ptipukq pt P rns, i P rps, k P r78sq denotes the

price of the i-th stock at the k-th five-minute interval (uk “ k{78) after the opening time on the t-th trad-

ing day. We obtain smoothed CIDR curves by expanding the data using a 10-dimensional B-spline basis.

The CIDR curves, which always start from zero, not only have nearly the same shape as the original price

curves but also enhance the plausibility of the stationarity assumption. We performed functional KPSS

test (Horváth et al., 2014) for each stock, and found no overwhelming evidence (under 1% significance

level) against the stationarity.

For model selection, the information criteria, ICD
1 “ ´0.632 ă ICF

1 “ ´0.614, suggests that FFM (1)
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is slightly more preferable and implies that the latent factors may exhibit intraday varying patterns. We

consider the problem of functional risk management in Section 4.1. Our task is to obtain the optimal

functional portfolio allocation pwp¨q by minimizing the perceived risk of the functional portfolio, specifically,

pw “ arg min
wPHp

@

w, pΣypwq
D

subject to

ż

U
wpuqT1pdu “ 1.

Following the derivations in Section S.5.4 of the supplementary material, we obtain the solution:

pwpuq “

ş

U
pΣ

:

ypu, vq1pdv
ş

U
ş

U 1T
p
pΣ

:

ypz, vq1pdzdv
, u P U , (25)

which allows us to obtain the actual risk. In practical implementation, we treat components of ytp¨q as

finite-dimensional functional objects and hence can obtain bounded inverse pΣ
:

y using the leading eigenpairs

of pΣy such that the corresponding cumulative percentage of selected eigenvalues exceeds 95%.

Table 2: Comparisons of the risks of the functional portfolios obtained using DIGIT, FPOET, GQW, POET-based
and sample estimators.

Estimator r̂ July August September October November December Average

DIGIT

1 0.0064 0.0127 0.0050 0.0154 0.0081 0.0994 0.0245
3 0.0029 0.0082 0.0032 0.0054 0.0094 0.0080 0.0062
5 0.0057 0.0136 0.0077 0.0075 0.0137 0.0149 0.0105
7 0.0081 0.0105 0.0058 0.0112 0.0096 0.0142 0.0099
9 0.0105 0.0124 0.0067 0.0095 0.0070 0.0201 0.0110
11 0.0130 0.0129 0.0069 0.0077 0.0085 0.0257 0.0125

FPOET

1 0.0350 0.0136 0.0109 0.0441 0.0378 0.0174 0.0265
3 0.0227 0.0207 0.0150 0.0224 0.0280 0.0524 0.0269
5 0.0154 0.0139 0.0222 0.0349 0.0275 0.0199 0.0223
7 0.0142 0.0162 0.0142 0.0108 0.0283 0.0224 0.0177
9 0.0428 0.0180 0.0215 0.0201 0.0306 0.0194 0.0254
11 0.0562 0.0224 0.0129 0.0294 0.0342 0.0348 0.0316

GQW

1 0.0063 0.0249 0.2104 1.6762 0.0047 0.4441 0.3944
3 0.0036 0.0092 0.0045 0.0231 0.0093 0.0105 0.0100
5 0.0062 0.0114 0.0061 0.0063 0.0117 0.0074 0.0082
7 0.0069 0.0152 0.0064 0.0089 0.0081 0.0155 0.0102
9 0.0122 0.0111 0.0063 0.0090 0.0114 0.0120 0.0103
11 0.0140 0.0157 0.0087 0.0072 0.0103 0.0251 0.0135

POET

1 0.0271 0.0272 0.0352 0.0197 0.0242 0.0389 0.0287
3 0.0270 0.0342 0.0463 0.0267 0.0257 0.0405 0.0334
5 0.0185 0.0269 0.0346 0.0229 0.0273 0.0430 0.0289
7 0.0214 0.0275 0.0373 0.0226 0.0243 0.0375 0.0284
9 0.0206 0.0250 0.0411 0.0241 0.0209 0.0342 0.0277
11 0.0178 0.0271 0.0407 0.0223 0.0229 0.0366 0.0279

Sample 0.0203 0.0290 0.0372 0.0254 0.0267 0.0310 0.0282

Following the procedure in Fan et al. (2013), on the 1st trading day of each month from July to

December, we estimate pΣy using DIGIT, FPOET, GQW and sample estimators based on the histor-

ical data comprising CIDR curves of 98 stocks for the preceding 6 months (n “ 126). We then de-

termine the corresponding optimal portfolio allocation pwpukq for k P r78s. To illustrate the superi-

ority of functional analytic methods, we also introduce a non-functional competing method based on

the POET estimator, whose portfolio construction procedure is detailed in Section S.5.5 of the supple-

mentary material. At the end of the month after 21 trading days, we compare actual risks calculated

23



by 78´2
ř

k,k1Pr78s pwpukqTt21´1
ř21

t“1 ytpukqytpuk1qTupwpuk1q. Following Fan et al. (2013) and Wang et al.

(2021), we try r̂ “ 1, 3, 5, 7, 9 and 11 to check the effect of r in out-of-sample performance. The numerical

results are summarized in Table 2. Among the functional analytic methods, we observe that the optimal

functional portfolio allocation created by DIGIT, FPOET, and GQW result in minimum averaged risks

over six months as 0.0062, 0.0177, and 0.0082, respectively, while the sample covariance estimator gives

0.0282. The risk has been significantly reduced by at least 37% using our factor-guided approach. Addi-

tionally, the POET-based method yields a minimum averaged risk of 0.0277, providing empirical evidence

for the advantage of functional analytic methods.

7 Discussions

Our theoretical results are established under a sub-Gaussian condition, which is imposed to facilitate

the use of Hanson–Wright-type concentration inequalities for time series within Hilbert space (Chang

et al., 2024) in our non-asymptotic analysis. To the best of our knowledge, the existing literature on con-

centration inequalities for high-dimensional functional time series are all of Hanson–Wright-type. It is thus

of interest to relax such sub-Gaussian condition to a weaker finite moment condition beyond functional

linear process, and based on which developing more generalized Nagaev-type concentration inequalities for

high-dimensional time series (Zhang and Wu, 2021) within Hilbert space to aid our theoretical analysis.

This relaxation will result in allowing the dimension p to grow polynomially rather than exponentially

with n. To achieve this, we also need to propose a new functional dependence measure instead of our

functional stability measure defined in (22) to characterize how the established concentration results are

affected by the complex serial dependence structure.

It is interesting to conduct specification tests such as testing one FFM against another and testing

the constancy of the factor or loading functions. Both tests rely on the inferential theory for FFMs,

which requires to explore the limiting distributions of estimated quantities. The existing literature on

FFMs only studies the estimation of factors, loadings and number of factors, without delving into the

corresponding limiting distributions. Note that the inferential theory for FFM based on MFPCA can be

developed for FFM (2) given its equivalence to the least squares method. By comparison, the inferential

theory for the eigenanalysis of doubly integrated Gram covariance specific to FFM (1) presents significant

challenges. Moreover, deriving the limiting distributions under functional domain involves characterizing

the magnitude of functional quantities using a suitable functional norm such as L2 or supremum norm,

presenting additional complexities compared to scalar time series.

While our paper focuses on fully observed functional time series, it is also interesting to consider the

common practical scenario, where each curve ytjp¨q is only partially observed, with errors, at Ttj random

time points. For densely observed functional time series with Ttj ’s being larger than some order of n, it

is customary to apply nonparametric smoothing to the observations from each curve (Zhang and Chen,

2007), which results in reconstructed curves pytjp¨q’s serving as new inputs for subsequent analysis. When

Ttj ’s are bounded, referred to as sparsely observed functional time series, the pre-smoothing step becomes

inapplicable. An alternative approach involves local linear surface smoothing by pooling observations

together from all curves (Chen et al., 2022). This method yields smoothed estimates of Σy,jkpu, vq’s that

can be utilized in our methodological development.

The aforementioned topics are beyond the scope of the current paper and will be pursued elsewhere.
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Appendix

This appendix contains the technical proofs of the results in Section 2 and the results for FFM (1)

in Section 3, i.e., Theorems 1–6 and Corollary 1. For the technical proofs of the results for FFM (2) in

Section 3 and the results in Section 4, see the supplementary material, which also provides the proofs of

some technical lemmas in the appendix, some further derivations, additional simulation results and real

data results. Throughout, we denote the multiplications of matrix kernel functions as M “ KG P HpbHp

for K,G P Hp b Hp, where Mpu, vq “
ş

U Kpu,wqGpw, vqdw.

A Proofs of theoretical results in Section 2

A.1 Technical lemmas

We first introduce useful theorems to prove Proposition 1. In the following two lemmas, tλjujPrps are

the eigenvalues of Σ P Rpˆp in a descending order and tξjujPrps are the corresponding eigenvectors. Simi-

larly, trλjujPrps and trξjujPrps are the corresponding eigenvalues and eigenvectors of rΣ P Rpˆp, respectively.

Lemma A.1. (Weyl’s theorem; Weyl (1912)). |rλj ´ λj | ď }rΣ ´ Σ} for j P rps.

Lemma A.2. (A useful variant of sinpθq theorem; Yu et al. (2015)). If rξ
T

j ξj ě 0 for j P rps, then

}rξj ´ ξj} ď
}rΣ ´ Σ}{

?
2

min
`

|rλj´1 ´ λj |, |λj ´ rλj`1|
˘
.

The functional version of Weyl’s theorem has been studied in Lemmas 4.2 and 4.3 of Bosq (2000).

Let tτiu
8
i“1 be the eigenvalues of the kernel function Σp¨, ¨q in a descending order and tφip¨qu8

i“1 are the

corresponding eigenfunctions. Similarly, trτiu
8
i“1 and trφip¨qu8

i“1 are the corresponding eigenvalues and

eigenfunctions of rΣp¨, ¨q, respectively.

Lemma A.3. (Lemma 4.2 in Bosq (2000)). |rτi ´ τi| ď }rΣ ´ Σ}L for all i.

Lemma A.4. (Lemma 4.3 in Bosq (2000)). If xrφi,φiy ě 0, then

}rφi ´φi} ď
2
?
2}rΣ ´ Σ}L

min
`

|rτi´1 ´ τi|, |τi ´ rτi`1|
˘ .

The following lemmas introduce some useful functional norm inequalities. Their proofs are relegated

to the supplementary material.

Lemma A.5. Suppose that K P Hp b Hp is a Mercer’s kernel with the spectral decomposition Kpu, vq “
ř8

i“1 λiϕipuqϕipvqT, where tλiu
8
i“1 are the eigenvalues of K in a descending order and tϕip¨qu are the
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corresponding eigenfunctions. Then, we have

(i) tr
␣ş ş

Kpu, vqKpu, vqTdudv
(

“ trt
ş

KKTpu, uqduu “ }K}2S,F “
ř8

i“1 λ
2
i ;

(ii)
›

›

ş ş

Kpu, vqKpu, vqTdudv
›

› “
›

›

ş

KKTpu, uqdu
›

› “ }K}2L “ λ2
1;

(iii) tr
␣ş

Kpu, uqdu
(

“ }K}N “
ř8

i“1 λi.

Lemma A.6. Suppose that K,G P Hp b Hp are Mercer’s kernels, then we have

(i)
›

›

ş ş

Kpu, vqGpu, vqTdudv
›

›

1
ď }K}S,1}G}S,8;

(ii)
›

›

ş ş

Kpu, vqGpu, vqTdudv
›

›

8
ď }K}S,8}G}S,1;

(iii)
›

›

ş ş

Kpu, vqGpu, vqTdudv
›

› ď p}K}S,8}K}S,1q
1{2

p}G}S,8}G}S,1q
1{2;

(iv)
›

›

ş ş

Kpu, vqGpu, vqTdudv
›

› ď
␣
›

›

ş ş

Kpu, vqKpu, vqTdudv
›

›

(1{2 ␣›
›

ş ş

Gpu, vqGpu, vqTdudv
›

›

(1{2
.

Lemma A.7. Suppose that Σ “ tΣijp¨, ¨qupˆp with Σij P S and rΣ P Hp b Hp are Mercer’s kernels. Then

we have (i) }ΣrΣ}L ď }Σ}L ¨ }rΣ}L, (ii) }Σ}L ď }Σ}S,F, and (iii) }Σ}L ď }Σ}
1{2
S,1}Σ}

1{2
S,8. Furthermore, if

}Σij}S “ }Σji}S for all i, j P rps, then }Σ}L ď }Σ}S,1.

Lemma A.8. Suppose that K,G P Hp b Hp are Mercer’s kernels, then we have

(i) trt
ş

KGpu, uqduu “ trt
ş

GKpu, uqduu, i.e., }KG}N “ }GK}N ;

(ii) trt
ş

KGpu, uqduu ď }K}Ltrt
ş

Gpu, uqduu, i.e., }KG}N ď }K}L}G}N ;

(iii) }KG}S,F ď }K}L}G}S,F.

Lemma A.9. For A P Rpˆq and K “ tKijp¨, ¨quqˆq P Hq b Hq, we have

(i) }AK}S,max ď }A}8}K}S,max, and }KAT}S,max ď }K}S,max}AT}1 “ }A}8}K}S,max;

(ii) }AK}S,F ď }A}F}K}S,F, and }KAT}S,F ď }K}S,F}AT}F “ }A}F}K}S,F;

(iii) }AK}S,8 ď }A}8}K}S,8, and }KAT}S,8 ď }K}S,8}AT}8 “ }A}1}K}S,8;

(iv) }AK}S,1 ď }A}1}K}S,1, and }KAT}S,1 ď }K}S,1}AT}1 “ }A}8}K}S,1.

Lemma A.10. For f ,g P Hr, and A P Rpˆr, we have

(i) }Af} ď }A} ¨ }f};

(ii) }K}S ď }f} ¨ }g} where Kp¨, ¨q P S is defined as Kpu, vq “ fpuqTgpvq.

A.2 Proof of Proposition 1

(i) Note that tλju
p
j“1 are the non-vanishing eigenvalues of Ω “

ş ş

Σypu, vqΣypu, vqTdudv, and tp2θju
r
j“1

are nonzero eigenvalues of ΩL, while the other p ´ r eigenvalues are zero. Then applying Lemma A.1

yields that, for each j P rrs,

|λj ´ p2θj | ď }Ω ´ ΩL} “ }ΩR},

and for r ` 1 ď j ď p, |λj | “ |λj ´ 0| ď }ΩR}.

(ii) By Lemma A.2, for j P rrs and ξT
j
rbj ě 0,

}ξj ´ rbj} ď
}ΩR}{

?
2

minp|λj´1 ´ p2θj |, |p2θj ´ λj`1|q
.

Note that there exists a generic constant c ą 0 such that |λj´1 ´ p2θj | ą p2|θj´1 ´ θj | ´ |λj´1 ´ p2θj´1| ą

cp2 since |λj´1 ´ p2θj´1| ď }ΩR} “ opp2q from part (i). If j ă r, a similar argument implies that

|p2θj ´ λj`1| ą cp2. If j “ r, |p2θr ´ λr`1| ą p2θr ´ |λr`1| ą cp2 since |λr`1| ď }ΩR} “ opp2q by using
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part (i) again. Hence, minp|λj´1 ´ p2θj |, |p2θj ´ λj`1|q Á p2, and if ξT
j
rbj ě 0, we have

}ξj ´ rbj} “ Opp´2}ΩR}q, for j P rrs.

A.3 Proof of Proposition 2

To prove Proposition 2, we first present a technical lemma with proof in the supplementary material.

Lemma A.11. Suppose that Assumption 1' holds. Then, tpϑjujPrrs are the non-vanishing eigenvalues of

Qp¨qQp¨qT P Hp b Hp with the corresponding eigenfunctions trqjp¨qujPrrs.

We are now ready to prove Proposition 2.

(i) Note that tτiu
8
i“1 are the eigenvalues of Σyp¨, ¨q, and tpϑju

r
j“1 are the r non-vanishing eigenvalues of

QQTp¨, ¨q by Lemma A.11. Applying Lemma A.3, we have, for j P rrs,

|τj ´ pϑj | ď }Σy ´ QQT}L “ }Σε}L,

and, for j ą r ` 1, |τi| “ |τi ´ 0| ď }Σε}L.

(ii) By Lemma A.7(iii), we have }Σε}L ď }Σε}
1{2
S,1}Σε}

1{2
S,8 “ Opspq “ oppq, which yields that τj — pϑj — p

for j P rrs. Under Assumption 1', ϑj are distinguishable and bounded away from both zero and infinity,

then minp|pϑj´1 ´ τj |, |τj ´ pϑj`1|q — p for j P rrs. It follows from Lemma A.4 that }φj ´ rqj} “

Opp´1}Σε}Lq for j P rrs.

A.4 Proof of Proposition 3

The sample covariance matrix of estimated idiosyncratic components by using the constrained least

squares follows that

rΣεpu, vq “
1

n
tYpuq ´ pQpuqpΓ

T

utYpvqT ´ pΓpQpvqTu “
1

n
YpuqYpvqT ´ pQpuqpQpvqT,

where we use the normalization condition n´1
pΓ

T
pΓ “ Ir and pQp¨q “ n´1Yp¨qpΓ. If we can show that

pQpuqpQpvqT “
řr

j“1 τ̂j pφjpuqpφjpvqT, then by the spectral decompositions of the sample covariance estima-

tor

pΣ
S

y pu, vq “
1

n
YpuqYpvqT “

r
ÿ

j“1

τ̂j pφjpuqpφjpvqT ` pRpu, vq “ pQpuqpQpvqT ` rΣεpu, vq,

we have pRp¨, ¨q “ rΣεp¨, ¨q. Thus, by applying the adaptive functional thresholding with the same regular-

ization parameters to the same remainder covariance matrix functions, we have pRAp¨, ¨q “ rΣ
A

ε p¨, ¨q, and

then pΣ
F

y p¨, ¨q “ pΣ
L

y p¨, ¨q, which gives the desired result.

We next show that pQpuqpQpvqT “
řr

j“1 τ̂j pφjpuqpφjpvqT holds. To do this, we impose another identifi-

ability condition that can serve as an alternative (see also Remark 2.1) to Assumption 1'.

Assumption A.1. p´1
ş

QpuqTQpuqdu “ Ir and Σγ is diagonal with distinct diagonal elements being

bounded away from both 0 and 8 as p Ñ 8.

Note that Assumptions 1' and A.1 can be converted to each other by orthogonal transformation. Thus,
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for the minimization problem (17), we can use the following two equivalent normalization constraints:

piq n´1
n
ÿ

t“1

γtγ
T
t “ Ir, and p´1

ż

QpuqTQpuqdu is diagonal,

piiq n´1
n
ÿ

t“1

γtγ
T
t is diagonal, and p´1

ż

QpuqTQpuqdu “ Ir.

(A.1)

Note that (A.1)(i) is used in Section 2.2 to obtain FPOET estimator. Following the similar procedure,

we obtain that

p

Qp¨q “
?
pppφ1p¨q, . . . , pφrp¨qq and

p

Γ “ p´1
ş

YpuqT

p

Qpuqdu is the solution to (17) under

(A.1)(ii). One can show that the two solutions under normalization constraints (A.1)(i) and (ii) are

equivalent and can be converted to each other through an orthogonal matrix, i.e., there exists an r ˆ r

orthogonal matrix H such that

p

Qp¨q “ pQp¨qH and

p

Γ “ pΓH. Notice that

p

Qp¨q “
?
ptpφ1p¨q, . . . , pφrp¨qu andp

Γ “ p´1
ş

YpuqT

p

Qpuqdu, then we have

n´1

p

Γ
T

p

Γ “p´2n´1

ż

p

QpuqTYpuqdu

ż

YpvqT

p

Qpvqdv “ p´2

ż ż

p

QpuqTtn´1YpuqYpvqTu

p

Qpvqdudv

“p´1

ż

tpφ1puqT, . . . , pφrpuqTuT

”

ż

pΣ
S

y pu, vqtpφ1pvq, . . . , pφrpvqudv
ı

du

“p´1

ż

tpφ1puqT, . . . , pφrpuqTuTtτ̂1pφ1puq, . . . , τ̂rpφrpuqudu “ p´1diagpτ̂1, . . . , τ̂rq.

Since

p

Qp¨q

p

Γ
T

“ pQp¨qHHT
pΓ

T

“ pQp¨qpΓ
T

, it follows that

pQpuqpQpvqT “ n´1
pQpuqpΓ

T
pΓpQpvqT “ n´1

p

Qpuq

p

Γ
T

p

Γ

p

QpvqT “

r
ÿ

j“1

τ̂j pφjpuqpφjpuqT.

B Proofs of theoretical results in Section 3

B.1 Technical lemmas

Lemma B.12. Under Assumptions 3(iv) and 4, we have that,

(i) for any i, j P rrs, }n´1
řn

t“1 ftiftj ´ Σf,ij}S “ Opp1{
?
nq, }n´1

řn
t“1 ftf

T
t ´ Σf }S,max “ Opp1{

?
nq;

(ii) for any i, j P rps, }n´1
řn

t“1 εtiεtj´Σε,ij}S “ OppMε{
?
nq, }n´1

řn
t“1 εtε

T
t ´Σε}S,max “ OppMε

a

log p{nq;

(iii) for any i, j P rps, }n´1
řn

t“1 ytiytj´Σy,ij}S “ OppMε{
?
nq, }n´1

řn
t“1 yty

T
t ´Σy}S,max “ OppMε

a

log p{nq.

We next introduce a lemma to give the perturbation rate in elementwise ℓ8 norm of the eigenvectors

if a matrix is perturbed. Suppose that A P Rpˆp is a symmetric matrix. Let the perturbed matrix be

rA “ A ` E, where E P Rpˆp is a symmetric perturbation matrix. Suppose the spectral decomposition of

A is given by A “
řr

i“1 λiviv
T
i `

ř

iąr λiviv
T
i , where |λ1| ą |λ2| ą ¨ ¨ ¨ ą |λp|. Clearly, Ar “

řr
i“1 λiviv

T
i

is the best rank-r approximation of A. Analogously, the spectral decomposition of rA “
řr

i“1 λ̃irvirv
T
i `

ř

iąr λ̃irvirv
T
i . Write V “ pv1, . . . ,vrq P Rpˆr and rV “ prv1, . . . , rvrq P Rpˆr.

Lemma B.13. Suppose ι satisfies ι ą }E} and for any i P rrs, the interval pλi ´ ι, λi ` ιq does not contain
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any eigenvalues of A other than λi. Then, there exists an orthogonal matrix U P Rrˆr such that

}rVU ´ V}max “ O

˜

r5{2µ2}E}8

p|λr| ´ }A ´ Ar}8q
?
p

¸

,

where µ “ µpVq is the coherence of V defined as µpVq “ pp{rqmaxi
řr

j“1 V
2
ij.

The proof of Lemma B.13 can be found in Fan et al. (2018).

Lemma B.14. (Theorem 4.2.5 in Hsing and Eubank (2015)). If Kp¨, ¨q is a compact and nonnegative

definite kernel matrix function with associated eigenvalue/eigenfunction pairs tλj , ejp¨qu8
j“1, then

λk “ max
ePspante1,...,ek´1uK

xe,Kpeqy

}e}2
.

Lemma B.15. Suppose that K,G P Hp bHp are Mercer’s kernels, }G:}L ă cn and }K´G}L “ oppc´1
n q

for a sequence cn ą 0. Let rK be the restriction of K to KerpGqK. Define K: as K:pxq “ rK´1pxq for

x P ImpGq and K:pxq “ 0 for x P ImpGqK. Then, we have (i) }K:}L ă 2cn with probability approaching

one, and (ii) }K: ´ G:}L “ Oppc2nq}K ´ G}L.

Lemma B.16. (i) Under Assumptions 3(ii)(iv) and 4, maxtPrns }ft} “ Opp
?
log nq, maxtPrns }p´1{2εt} “

Opp
?
log nq and maxtPrns }p´1{2BTεt} “ Opp

?
log nq.

(ii) Under Assumptions 3'(ii)(iv) and 4', maxtPrns }γt} “ Opp
?
log nq, maxtPrns }p´1{2

ş

QpuqTεtpuqdu} “

Opp
?
log nq and maxt1Prns |p´1{2txεt, εt1y ´ Exεt, εt1yu|2 “ Opplog nq for each t P rns.

B.2 Proof of Theorem 1

The proof of part (i) of Theorem 1 mainly relies on Lemma B.13. To prove Theorem 1, we first present

some technical lemmas. The proofs of Lemmas B.17–B.20 are provided in the supplementary material.

Lemma B.17. Suppose that Assumption 1 holds. Then there exist some constants Cmax, C8 ą 0 such

that (i) }Σf }S,max ď Cmax, (ii) maxp}Σf }S,8, }Σf }S,1, }Σf }S,Fq ď C8.

Lemma B.18. Suppose that Assumptions 1–3 hold. Then we have (i) }Σy}S,max À 1, (ii) }Σy}S,8 À p,

and (iii) }Σy}S,1 À p.

Lemma B.19. Supposing that Assumptions 1–3 hold, we have }ΩL} — p2 and }ΩR} À p.

Lemma B.20. Under the assumptions of Theorem 1, we have }ΩR}8 À psp “ opp2q.

Lemma B.21. Under the assumptions of Theorem 1, we have (i) }pΩ ´ Ω} “ OppMεp
2
a

1{nq “ oppp2q,

and (ii) }pΩ ´ Ω}8 “ OppMεp
2
a

log p{nq “ oppp2q.
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Proof. (i) Note that

}pΩ ´ Ω} “

›

›

›

›

ż ż

pΣ
S

y pu, vqpΣ
S

y pu, vqTdudv ´

ż ż

Σypu, vqΣypu, vqTdudv

›

›

›

›

“

›

›

›

›

ż ż

!

pΣ
S

y pu, vq ´ Σypu, vq

)

pΣ
S

y pu, vqT ` Σypu, vq

!

pΣ
S

y pu, vqT ´ Σypu, vqT
)

dudv

›

›

›

›

“

›

›

›

›

ż ż

!

pΣ
S

y pu, vq ´ Σypu, vq

)!

pΣ
S

y pu, vqT ´ Σypu, vqT ` Σypu, vqT
)

` Σypu, vq

!

pΣ
S

y pu, vqT ´ Σypu, vqT
)

dudv
›

›

›

ď

›

›

›

›

ż ż

!

pΣ
S

y pu, vq ´ Σypu, vq

)!

pΣ
S

y pu, vq ´ Σypu, vq

)T

dudv

›

›

›

›

` 2

›

›

›

›

ż ż

!

pΣ
S

y pu, vq ´ Σypu, vq

)

Σypu, vqTdudv

›

›

›

›

ď}pΣ
S

y ´ Σy}2L ` 2}pΣ
S

y ´ Σy}L}Σy}L ď }pΣ
S

y ´ Σy}2S,F ` 2}pΣ
S

y ´ Σy}S,F}Σy}S,F

“

p
ÿ

i“1

p
ÿ

j“1

}n´1
n
ÿ

t“1

ytiytj ´ Σy,ij}
2
S ` 2

˜

p
ÿ

i“1

p
ÿ

j“1

}n´1
n
ÿ

t“1

ytiytj ´ Σy,ij}
2
S

¸1{2

}Σy}S,F

“Op

´

Mεp
2
a

1{n
¯

“ oppp2q,

(B.2)

where the second inequality follows from Lemmas A.5(ii) and A.6(iv), the third inequality follows from

Lemma A.7(ii), and the last line follows from Lemma B.12(iii), the fact that }K}S,F ď p}K}S,max and

Assumption 4(ii).

(ii) The argument can be proved in matrix ℓ8 norm following the similar procedure. Specifically,

}pΩ ´ Ω}8 ď

›

›

›

›

ż ż

!

pΣ
S

y pu, vq ´ Σypu, vq

)!

pΣ
S

y pu, vq ´ Σypu, vq

)T

dudv

›

›

›

›

8

` 2

›

›

›

›

ż ż

!

pΣ
S

y pu, vq ´ Σypu, vq

)

Σypu, vqTdudv

›

›

›

›

8

ď}pΣ
S

y ´ Σy}S,8}pΣ
S

y ´ Σy}S,1 ` 2}pΣ
S

y ´ Σy}S,8}Σy}S,1

—p2}pΣ
S

y ´ Σy}S,max “ Op

`

Mεp
2
a

log p{n
˘

“ oppp2q,

where the first inequality can be obtained in a way similar to (B.2), the second inequality follows from

Lemma A.6(ii), and the last line follows from Lemma B.12(iii) and Assumption 4(ii).

Lemma B.22. Let tλ̂ju
p
j“1 be the eigenvalues of pΩ in a descending order. Under the assumptions of

Theorem 1, it holds that λ̂r Á p2 with probability approaching one. Furthermore, λ̂i ´ λ̂j Á p2 for all

1 ď i ă j ď r with probability approaching one.

Proof. By Proposition 1 and Lemma B.19, the r-th largest eigenvalue λr of Ω satisfies λr ě p2θr ´ |λr ´

p2θr| ě p2θr ´}ΩR} Á p2. Applying Lemma A.1 yields that |λ̂j ´λj | ď }pΩ´Ω}, for j P rps. From Lemma

B.21(i), we have }pΩ ´ Ω} “ oppp2q and hence λ̂r Á p2 with probability approaching one. Furthermore,

for all 1 ď i ă j ď r, with probability approaching one,

λ̂i ´ λ̂j ě pλi ´ λjq ´ |λ̂i ´ λi| ´ |λ̂j ´ λj | “ p2pθi ´ θjq ´ oppp2q Á p2.
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The following lemma is used to prove Theorems 3 and 6, and its proof is provided in the supplementary

material.

Lemma B.23. Under the assumptions of Theorem 1, we have }pB ´ BUT}F “ OppMε

a

p{n ` 1{
?
pq.

We are now ready to prove Theorem 1.

(i) Let E “ pΩ ´ Ω be the p ˆ p perturbation matrix. By Lemma B.21, we have

}E}8 ď }pΩ ´ Ω}8 “ Op

`

Mεp
2
a

log p{n
˘

“ oppp2q.

Corresponding to Lemma B.13, here A “ Ω, rA “ pΩ, and the r-th eigenvalue of A satisfies λr — p2 by

Proposition 1 and Lemma B.19. Then, }A ´ Ar}8 ď }Ω ´ ΩL}8 “ }ΩR}8 “ psp “ opp2q from Lemma

B.20. Note that V “ pξ1, . . . , ξrq P Rpˆr, and denote ξj “ pξ1j , . . . , ξpjq
T. The coherence of V is given by

µ “ µpVq “
p

r
max
iPrps

r
ÿ

j“1

ξ2ij ď
p

r
max
iPrps

r
ÿ

j“1

`

rb2ij ` }ξj ´ rbj}
2
˘

“ Op1q,

since maxiPrps
rbij “ maxiPrps p

´1{2bij ď p´1{2}B}max “ Opp´1{2q and }ξj ´ rbj} “ Opp´1q if ξT
j
rbj ě 0 by

Proposition 1(ii) and Lemma B.19. In addition, supposing that ι « }E} “ oppp2q but ι ą }E}, we can

show that for any j P rrs, the the interval pλj ´ ι, λj ` ιq does not contain any eigenvalues of Ω other than

λj with probability approaching one. Thus by Lemma B.13, we have for j P rrs, if pξ
T

j ξj ě 0,

}pξj ´ ξj}max “ Op

˜

r5{2µ2}E}8

p2
?
p

¸

“ Op

˜

Mε

d

log p

pn

¸

.

For j P rrs, if ξT
j
rbj ě 0, we have }ξj ´ rbj}max ď }ξj ´ rbj} “ Opp´1q, which implies that }pξj ´ rbj}max “

OppMε

a

log p{pn ` 1{pq. Since pB “
?
pppξ1, . . . ,

pξrq and B “
?
pprb1, . . . , rbrq, one can obtain that there

exists an orthogonal matrix U P Rrˆr (the same as that in Lemma B.23) such that

}pB ´ BUT}max “ Op

`

Mε

a

log p{n ` 1{
?
p
˘

“ opp1q,

where the matrix U is used to adjust the direction so that each bT
j
pbj ě 0 for j P rrs.

(ii) Note that pftp¨q “ p´1
pBTytp¨q “ p´1

pBTtBftp¨q ` εtp¨qu for t P rns and then

pftp¨q ´ Uftp¨q “ p´1ppBTB ´ UBTBqftp¨q ` p´1
pBTεtp¨q. (B.3)

For the first term of (B.3), applying Lemmas A.10 and B.23 yields that

}p´1ppBTB ´ UBTBqft} ď p´1}pBT ´ UBT}}B}}ft} “ Op

`

Mε

a

1{n ` 1{p
˘

,

since }pBT ´ UBT} ď }pB ´ BUT}F “ OppMε

a

p{n ` 1{
?
pq, }B} “ λ

1{2
maxpBTBq “

?
p and }ft} “ Opp1q.

For the second term of (B.3), notice that

}p´1
pBTεt} “ }p´1UBTεt} ` }p´1ppBT ´ UBTqεt} “ OppMε

a

1{n ` 1{
?
pq,
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which follows from }p´1BTεt} “ Opp1{
?
pq by Assumption 3(ii), }pBT ´ UBT} “ OppMε

a

p{n ` 1{
?
pq

by Lemma B.23, and }εt} “ Opp
?
pq since E}εt}

2 ď pmaxiPrps E}εti}
2 “ pmaxiPrps }Σε,ii}N “ Oppq by

Assumption 3(iv). The result follows immediately that for t P rns,

}pft ´ Uft} “ Op

`

Mε{
?
n ` 1{

?
p
˘

,

and thus n´1
řn

t“1 }pft ´ Uft}
2 “ OppM2

ε{n ` 1{pq.

(iii) The proof procedure is similar to part (ii). We only need to notice that by Lemma B.16(i), we have

maxtPrns }ft} “ Opp
?
log nq,maxtPrns }p´1εt} “ Opp

a

log n{pq and maxtPrns }p´1Bεt} “ Opp
a

log n{pq.

B.3 Proof of Corollary 1

By Theorem 1(i)(iii), Lemma B.16(i), and Assumption 3(i), we have

max
iPrps,tPrns

}

p

b
T

i
pft ´ b̆T

i ft} ďmax
iPrps

}

p

bi ´ Ub̆i} ¨ max
tPrns

}pft} ` max
iPrps

}b̆i} ¨ max
tPrns

}UT
pft ´ ft}

“Oppϖn,p ¨
a

log nq ` OppMε

a

log n{n `
a

log n{pq

“Op

`

Mε

a

log n log p{n `
a

log n{p
˘

.

B.4 Proof of Theorem 2

(i) By Proposition 1 and Lemma B.19, |λj ´ p2θj | ď }ΩR} À p for j P rrs, which implies that λj — p2

for j P rrs, and |λj | À p for r ` 1 ď j ď r1,0. By Lemmas A.1 and B.21, it follows that |λ̂j ´ λj | ď

}pΩ ´ Ω} “ OppMεp
2n´1{2q for j P rps. Let β1n “ Mεp

2n´1{2 and rβ1n “ p ` Mεp
2n´1{2. Then, we have

|λ̂j ´ λj | “ Oppβ1nq for j P rrs and |λ̂j | “ Opprβ1nq for r ` 1 ď j ď r1,0. We next verify the following

conditions (a), (b) and (c) by Assumptions 4(ii) and 7:

(a) pϑ1n ` rβ1nq{pλ2
r{λ1q — pϑ1n ` p ` Mεp

2n´1{2q{p2 Ñ 0;

(b) β1n{λr — Mεp
2n´1{2{p2 “ Mεn

´1{2 Ñ 0;

(c) rβ2
1n{pϑ1nλrq — pp ` Mεp

2n´1{2q2{pϑ1np
2q — ϑ´1

1n ` ϑ´1
1nM2

εp
2n´1 Ñ 0.

Under (a), (b) and (c), we apply Proposition 1 of Han et al. (2022) and obtain Ppr̂D “ rq Ñ 1 with r̂D

defined in (19), which completes the proof of Theorem 2(i).

(ii) By Proposition 2, |τj ´ pϑj | ď }Σε}L “ Op1q for j P rrs, which implies that τj — p for j P rrs, and

|τj | “ Op1q for r ` 1 ď j ď r2,0. By Lemma A.3 and the proof of Lemma S.5 of the supplementary

material, it follows that |τ̂j ´ τj | ď }pΣ
S

y ´ Σy}S,F “ OppMεpn
´1{2q for j P rps. Let β2n “ Mεpn

´1{2 and
rβ2n “ 1`Mεpn

´1{2. Then, we have |τ̂j ´ τj | “ Oppβ2nq for j P rrs and |τ̂j | “ Opprβ2nq for r`1 ď j ď r2,0.

We next verify the following conditions (d), (e) and (f) by Assumptions 4'(ii) and 7':

(d) pϑ2n ` rβ2nq{pτ2r {τ1q — pϑ2n ` 1 ` Mεpn
´1{2q{p Ñ 0;

(e) β2n{τr — Mεpn
´1{2{p “ Mεn

´1{2 Ñ 0;

(f) rβ2
2n{pϑ2nτrq — p1 ` Mεpn

´1{2q2{pϑ2npq — ϑ´1
2n p

´1 ` ϑ´1
2nM2

εpn
´1 Ñ 0.

Under (d), (e) and (f), we apply Proposition 1 of Han et al. (2022) and obtain Ppr̂F “ rq Ñ 1 with r̂F

defined in (20), which completes the proof of Theorem 2(ii).
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B.5 Proof of Theorem 3

We denote r0 “ r1,0 ^ r2,0 for simplicity.

Lemma B.24. (i) Under Assumptions 1–4 and 8, there exists some constant c1 ą 0 such that P
␣

log V Dprq`

c1 ď minkPrr´1s log V
Fpkq

(

Ñ 1 and P
␣

log V Dpkq ` c1 ď log V Fpkq
(

Ñ 1 for r ď k ď r0.

(ii) Under Assumptions 1'–4' and 8', there exists some constant c2 ą 0 such that P
␣

minkPrr´1s log V
Dpkq ě

log V Fprq ` c2
(

Ñ 1 and P
␣

log V Dpkq ě log V Fpkq ` c2
(

Ñ 1 for r ď k ď r0.

Proof. Let e1ktp¨q “ ytp¨q ´ p´1
pBk

pBT
kytp¨q and e2ktp¨q “ ytp¨q ´ n´1Ytp¨qpΓkpγt,k for t P rns and k P rr0s,

where pBk is the estimated loadings by DIGIT estimator with k functional factors, and pΓk is the estimated

factors by FPOET estimator with k scalar factors. By definitions, it can be seen that

V Dpkq “
1

pn

n
ÿ

t“1

}e1kt}
2 “

1

pn

n
ÿ

t“1

ż

e1ktpuqTe1ktpuqdu “
1

p
tr

#

ż

1

n

n
ÿ

t“1

e1ktpuqe1ktpuqTdu

+

“ p´1
›

›pΣ
S

e,1k

›

›

N ,

and similarly it follows that V Fpkq “ p´1
›

›pΣ
S

e,2k

›

›

N , where pΣ
S

e,1k and pΣ
S

e,2k are the sample covariance

of te1ktp¨qu and te2ktp¨qu, respectively. Notice that χtp¨q “ Bftp¨q and κtp¨q “ Qp¨qγt are the common

components of the two respective FFMs. By Section S.5.2 of the supplementary material, we have

Σχpu, vq “

8
ÿ

i“1

pωiψipuqψipvqT and Σκpu, vq “

r
ÿ

j“1

p

p

ϑjνjpuqνjpvqT for pu, vq P U2.

(i) For the first argument, note that e1rt ´ εt “ Bft ´ pBpft for t P rns. On the one hand, by Theo-

rem 1 and Lemma B.23, it can be shown that n´1
řn

t“1 }Bft ´ pBpft}
2 “ OppM2

εp{n ` 1q “ opppq. Since

E
`

n´1
řn

t“1 }εt}
2
˘

“ n´1
řn

t“1 E}εt}
2 “ oppq by Assumption 8(ii), we have n´1

řn
t“1 }εt}

2 “ opppq. By

using the inequality pa ` bq2 ď 2pa2 ` b2q, it follows that
›

›pΣ
S

e,1r

›

›

N “ opppq and thus V Dprq “ opp1q.

On the other hand, by Assumption 8(i) and Lemma A.5(iii), it can be shown that for 1 ď k ă

r, n´1
řn

t“1 }e2kt ´ εt}
2 Á p with probability approaching one, since

ř8
i“k`1 pωi — p and the leading

k eigenfunctions of pΣ
S

y cannot recover the space spanned by the eigenfunctions of Σχ corresponding to

the eigenvalues with order p. By using the inequality pa ´ bq2 ě a2{2 ´ b2 and n´1
řn

t“1 }εt}
2 “ opppq,

we have
›

›pΣ
S

e,2k

›

›

N Á p and V Fpkq Á 1 with probability approaching one for 1 ď k ă r. Hence, there

exists some small constant 0 ă c1 ă 1{2 such that minkPrr´1s V
Fpkq{V Dprq ą 1` 2c1 with probability ap-

proaching one for all large p and n, which implies that logtminkPrr´1s V
Fpkq{V Dprqu ě c1 with probability

approaching one by similar argument to the proof of Corollary 1 of Bai and Ng (2002).

For the second argument, following the similar procedures to the proof of Lemma 4 in Bai and Ng

(2002), it can be shown that for any fixed k ě r, V Dprq´V Dpkq “ OppM2
ε{n`1{pq “ opp1q, which implies

that V Dpkq “ opp1q for k ě r. By Assumption 8(i) and using the similar procedures to the first argument,

we have V Fpkq Á 1 with probability approaching one. The desired results hold accordingly.

(ii) The proofs are similar to part (i). To show V Dpkq Á 1 with probability approaching one, it relies on

Assumption 8'(i) that rank
␣ş ş

Σκpu, vqΣκpu, vqTdudv
(

“ rank
␣ş

QpuqQpuqTdu
(

ě k`1 for k P rr0s.

Lemma B.25. Suppose that gpp, nq Ñ 0 and pM2
ε{n ` 1{pq´1gpp, nq Ñ 8 as p, n Ñ 8 for the penalty

functions gDpp, nq and gFpp, nq in (21). Then, (i) under Assumptions 1–4, P
␣

ICDprq ď ICDpkq
(

Ñ 1 for

k P rr0s; (ii) under Assumptions 1'–4', P
␣

ICFprq ď ICFpkq
(

Ñ 1 for k P rr0s.
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Proof. (ii) Let Γk “ pγ1,k, . . . ,γn,kqT be a n ˆ k matrix. Define the average of squared residuals when

using tγt,kutPrns as k known factors for the estimation of FFM (2):

rV Fpk,Γkq “ min
Qp¨q

1

pn

n
ÿ

t“1

}yt ´ Qγt,k}2 “
1

pn

n
ÿ

t“1

}yt ´ n´1YΓkγt,k}2.

Note that rV Fpk, pΓkq “ V Fpkq. The proof can be organized in the following three steps.

Step 1. For any fixed k P rr0s, define Hk “ n´1V´1
k

pΓ
T

kΓ
ş

QpuqTQpuqdu, where Vk is the diagonal

matrix of the first k largest eigenvalues of pΣ
S

y in a decreasing order, Γ “ pγ1, . . . ,γnqT is the true

factors and pΓk “ ppγ1,k, . . . , pγn,kqT is formed by k estimated factors using FPOET. Similar to (S.6) of the

supplementary material, we have

pγt,k ´ Hkγt “

´Vk

p

¯´1! 1

n

n
ÿ

t1“1

pγt1,k

Exεt1 , εty

p
`

1

n

n
ÿ

t1“1

pγt1,kζt1t `
1

n

n
ÿ

t1“1

pγt1,kηt1t `
1

n

n
ÿ

t1“1

pγt1,kξt1t

)

,

where ζt1t, ηt1t and ξt1t take the same definitions as (S.6). Analogous to the proofs of Lemma S.4 and

Theorem 1'(i), it can be shown that n´1
řn

t“1 }pγt,k ´ γt}
2 “ OppM2

ε{n ` 1{pq for any fixed k P rr0s.

Step 2. Following the similar procedures to the proofs of Lemmas 2–4 in Bai and Ng (2002) and

combining the result in Step 1, we obtain that: (i) for k P rrs,
ˇ

ˇ rV Fpk, pΓkq ´ rV Fpk,HkΓq
ˇ

ˇ “ OppMε{
?
n `

1{
?
pq; (ii) for k P rrs, there exists some constant c1

k ą 0 such that rV Fpk,HkΓq ´ rV Fpr,Γq ě c1
k with

probability approaching one; (ii) for r ` 1 ď k ď r0,
ˇ

ˇ rV Fpk, pΓkq ´ rV Fpr, pΓrq
ˇ

ˇ “ OppM2
ε{n ` 1{pq.

Step 3. For k P rrs, consider that

rV Fpk, pΓkq ´ rV Fpr, pΓrq “trV Fpk, pΓkq ´ rV Fpk,HkΓqu ` trV Fpk,HkΓq ´ rV Fpr,HrΓqu

` trV Fpr,HrΓq ´ rV Fpr, pΓrqu ě c1
k

with probability approaching one, where the first and third terms are both OppMε{
?
n ` 1{

?
pq “ opp1q

by the first argument of Step 2 and the second term is large than c1
k with probability approaching one

by the second argument of Step 2 since rV Fpr,HrΓq “ rV Fpr,Γq. Thus, there exists some small constant

0 ă ϵ1 ă 1{2 such that V Fpkq{V Fprq ą 1 ` 2ϵ1 with probability approaching one, which implies that

logtV Fpkq{V Fprqu ą ϵ1 with probability approaching one. Since gFpp, nq Ñ 0 as p, n Ñ 8, we have

PtICFpkq ą ICFprqu Ñ 1 for k P rrs. For r ` 1 ď k ď r0, the third argument of Step 2 shows that

V Fpkq{V Fprq “ 1 ` OppM2
ε{n ` 1{pq, which implies that logtV Fpkq{V Fprqu “ OppM2

ε{n ` 1{pq. As

pM2
ε{n ` 1{pq´1gFpp, nq Ñ 8, it follows that PtICFpkq ą ICFprqu Ñ 1 for r ` 1 ď k ď r0, which

completes the proof of part (ii).

(i) Let Bk be a given p ˆ k loading matrix of k functional factors. Define

rV Dpk,Bkq “ min
ft,kp¨qPHk,tPrns

1

pn

n
ÿ

t“1

}yt ´ Bkft,k}2 “
1

pn

n
ÿ

t“1

}yt ´ p´1BkB
T
kyt}

2.

Note that rV Dpk, pBkq “ V Dpkq. The remaining proof procedures are similar to part (ii) and omitted.

We are now ready to prove Theorem 3.

(i) Define the following events: E1 “ tICDpr̂Dq “ ICDprqu, E2k “ tICDprq ď ICDpkqu for k P rr0s, E3 “
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tICDprq ă minkPrr´1s IC
Fpkqu and E4k “ tICDpkq ă ICFpkqu for r ď k ď r0. As p, n Ñ 8, we

have PpE1q Ñ 1 by Theorem 2(i), PpE2kq Ñ 1 by Lemma B.25(i), PpE3q Ñ 1 by the first argument

of Lemma B.24(i) and gDpp, nq “ op1q, gFpp, nq “ op1q, and PpE4kq Ñ 1 by the second argument of

Lemma B.24(i) and gDpp, nq “ op1q, gFpp, nq “ op1q. Let E2 “
Şr0

k“1E2k and E4 “
Şr0

k“r E4k. Then,

under the event E “ E1
Ş

E2
Ş

E3
Ş

E4 with PpEq Ñ 1, it follows that

ICDpr̂Dq “ ICDprq “ min
kPrr0s

ICDpkq ă min
kPrr0s

ICFpkq ď ICFpr̂Fq,

where the first equality holds under E1, the second equality holds under E2, the first inequality holds

under E3
Ş

E4 since minkPrr0s IC
Fpkq “ minkPrr´1s IC

Fpkq^ICFprq^ICFpr`1q^¨ ¨ ¨^ICFpr0q ą ICDprq^

ICDpr`1q^¨ ¨ ¨^ICDpr0q ě minkPrr0s IC
Dpkq, and the second inequality holds automatically, which together

show the desired result.

(ii) The proof is similar to part (i). Define the following events: rE1 “ tICFpr̂Fq “ ICFprqu, rE2k “

tICFprq ď ICFpkqu for k P rr0s, rE3 “ tICFprq ă minkPrr´1s IC
Dpkqu and rE4k “ tICFpkq ă ICDpkqu for

r ď k ď r0. As p, n Ñ 8, we have Pp rE1q Ñ 1 by Theorem 2(ii), Pp rE2kq Ñ 1 by Lemma B.25(ii),

Pp rE3q Ñ 1 by the first argument of Lemma B.24(ii) and gDpp, nq “ op1q, gFpp, nq “ op1q, and Pp rE4kq Ñ 1

by the second argument of Lemma B.24(ii) and gDpp, nq “ op1q, gFpp, nq “ op1q. Let rE2 “
Şr0

k“1
rE2k and

rE4 “
Şr0

k“r
rE4k. Then, under the event rE “ rE1

Ş

rE2
Ş

rE3
Ş

rE4 with Pp rEq Ñ 1, it follows that

ICFpr̂Fq “ ICFprq “ min
kPrr0s

ICFpkq ă min
kPrr0s

ICDpkq ď ICDpr̂Dq,

where the first equality holds under rE1, the second equality holds under rE2, the first inequality holds

under rE3
Ş

rE4 since minkPrr0s IC
Dpkq “ minkPrr´1s IC

Dpkq^ICDprq^ICDpr`1q^¨ ¨ ¨^ICDpr0q ą ICFprq^

ICFpr`1q^¨ ¨ ¨^ICFpr0q ě minkPrr0s IC
Fpkq, and the second inequality holds automatically, which together

show the desired result.

B.6 Proof of Theorem 4

To prove Theorem 4, we first present some technical lemmas with their proofs.

Lemma B.26. Under the assumptions of Theorem 4, it holds that

(i) maxiPrps n
´1

řn
t“1 }pεti ´ εti}

2 “ Oppϖ2
n,pq;

(ii) maxi,jPrps }n´1
řn

t“1 pεtipεtj ´ n´1
řn

t“1 εtiεtj}S “ Oppϖn,pq;

(iii) }pΣε ´ Σε}S,max “ Oppϖn,pq.

Proof. (i) Notice that pεtip¨q´εtip¨q “ tytip¨q´b̆T
i ftp¨qu´tytip¨q´

p

b
T

i
pftp¨qu “ p

p

bi´Ub̆iq
T
pftp¨q´b̆T

i pUT
pft´ftqp¨q,

where b̆i and

p

bi are the i-th rows of B and pB, respectively. Applying the inequality pa` bq2 ď 2pa2 ` b2q

and the Cauchy–Schwarz inequality yields that

max
iPrps

1

n

n
ÿ

t“1

}pεti ´ εti}
2 ď2max

iPrps
}

p

bi ´ Ub̆i}
2 1

n

n
ÿ

t“1

}pft}
2 ` 2max

iPrps
}b̆i}

2 1

n

n
ÿ

t“1

}UT
pft ´ ft}

2

“Oppϖ2
n,pq ` OppM2

ε{n ` 1{pq “ Oppϖ2
n,pq.

(ii) Notice that maxiPrps E}εti}
2 “ maxiPrps E

ş

εtipuq2du “ maxiPrps

ş

Σε,iipu, uqdu “ Op1q from Assump-
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tion 3(iv), thus we have maxiPrps n
´1

řn
t“1 }εti}

2 “ Opp1q. By the Cauchy–Schwarz inequality,

max
i,jPrps

›

›

›

1

n

n
ÿ

t“1

pεtipεtj ´
1

n

n
ÿ

t“1

εtiεtj

›

›

›

S
“ max

i,jPrps

›

›

›

1

n

n
ÿ

t“1

ppεti ´ εtiqpεtj ` εtippεtj ´ εtjq
›

›

›

S

ďmax
iPrps

1

n

n
ÿ

t“1

}pεti ´ εti}
2 ` 2

´

max
iPrps

1

n

n
ÿ

t“1

}εti}
2
¯1{2´

max
jPrps

1

n

n
ÿ

t“1

}pεtj ´ εtj}
2
¯1{2

“Oppϖ2
n,pq ` Oppϖn,pq “ Oppϖn,pq.

(iii) The result is immediately implied by part (ii) above and Lemma B.12(ii).

Lemma B.27. Under the assumptions of Theorem 4, there exist some constants Θ1,Θ2 ą 0 such that

with probability approaching one,

Θ1 ď min
iPrps,jPrps

}pΘ
1{2
ij }S ď max

iPrps,jPrps
}pΘ

1{2
ij }S ď Θ2.

Proof. See the supplementary material.

We are now ready to prove Theorem 4. By Lemmas B.26(iii) and B.27, we have }pΣε ´ Σε}S,max “

Oppϖn,pq and maxijPrps }Θij}S “ Opp1q. Consequently, for any ϵ ą 0, there exist some positive constants

N,Θ1 and Θ2 such that each of events

Υ1 “

"

max
iPrps,jPrps

›

›

›

pΣε,ij ´ Σε,ij

›

›

›

S
ă Nϖn,p

*

, Υ2 “

!

Θ1 ď
›

›pΘ
1{2
ij

›

›

S ď Θ2, all i, j P rps

)

hold with probability at least 1 ´ ϵ. The thresholding in (10) is equivalent to pΣA
ε,ij “ sij

`

pΣε,ij

˘

, where

sijp¨q ” sλij
p¨q with λij “ 9Cωn,p}pΘ

1{2
ij }S and ωn,p “

a

log p{n ` 1{
?
p which is smaller than ϖn,p. For

9C ą 2NΘ´1
1 pϖn,p{ωn,pq, under the event Υ1 X Υ2, we obtain that

}pΣ
A

ε ´ Σε}S,1 “ max
iPrps

p
ÿ

j“1

}pΣA
ε,ij ´ Σε,ij}S “ max

iPrps

p
ÿ

j“1

}sijppΣε,ijq ´ Σε,ij}S

ďmax
iPrps

p
ÿ

j“1

}sijppΣε,ijq ´ pΣε,ij}SI
`

}pΣε,ij}S ą 9Cωn,p}pΘ
1{2
ij }S

˘

` max
iPrps

p
ÿ

j“1

}pΣε,ij ´ Σε,ij}SI
`

}pΣε,ij}S ą 9Cωn,p}pΘ
1{2
ij }S

˘

` max
iPrps

p
ÿ

j“1

}Σε,ij}SI
`

}pΣε,ij}S ď 9Cωn,p}pΘ
1{2
ij }S

˘

ďmax
iPrps

p
ÿ

j“1

λijI
`

}pΣε,ij}S ą 9Cωn,pΘ1

˘

` max
iPrps

p
ÿ

j“1

Nϖn,pI
`

}pΣε,ij}S ą 9Cωn,pΘ1

˘

` max
iPrps

p
ÿ

j“1

}Σε,ij}SI
`

}pΣε,ij}S ď 9Cωn,pΘ2

˘

ďp 9CΘ2 ` Nqϖn,p max
iPrps

p
ÿ

j“1

I
`

}Σε,ij}S ą Nϖn,p

˘

` max
iPrps

p
ÿ

j“1

}Σε,ij}SI
`

}Σε,ij}S ď p 9CΘ2 ` Nqϖn,p

˘

ďp 9CΘ2 ` Nqϖn,p max
iPrps

p
ÿ

j“1

}Σε,ij}
q
S

Nqϖq
n,p

I
`

}Σε,ij}S ą Nϖn,p

˘

` max
iPrps

p
ÿ

j“1

}Σε,ij}S
p 9CΘ2 ` Nq1´qϖ1´q

n,p

}Σε,ij}
1´q
S

I
`

}Σε,ij}S ď p 9CΘ2 ` Nqϖn,p

˘

ďp 9CΘ2 ` Nq
␣

N´q ` p 9CΘ2 ` Nq´q
(

ϖ1´q
n,p max

iPrps

p
ÿ

j“1

}Σε,ij}
q
S — ϖ1´q

n,p sp,
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where the third inequality follows from 9CΘ1ωn,p ą 2Nϖn,p, and the last line follows from the fact

that sp “ maxiPrps

řp
j“1 }σi}

p1´qq{2
N }σj}

p1´qq{2
N }Σε,ij}

q
S — maxiPrps

řp
j“1 }Σε,ij}

q
S since maxiPrps }σi}N “

maxiPrps

ş

Σεpu, uqdu “ Op1q by Assumption 3(iv). Therefore, with probability at least 1 ´ 2ϵ, }pΣ
A

ε ´

Σε}S,1 À ϖ1´q
n,p sp. Considering that ϵ ą 0 can be arbitrarily small, we have the desired result

}pΣ
A

ε ´ Σε}L ď }pΣ
A

ε ´ Σε}S,1 “ Oppϖ1´q
n,p spq.

B.7 Proof of Theorem 5

To prove Theorem 5, we first present a technical lemma with its proof.

Lemma B.28. Suppose that the assumptions of Theorem 5 hold. For the sample covariance of pft, i.e.,

pΣf pu, vq “ n´1
řn

t“1
pftpuqpftpvqT, we have

}pΣf ´ UΣfU
T}S,max “ OppMε{

?
n ` 1{

?
pq.

Proof. Consider pftpuqpftpvqT ´ UftpuqftpvqTUT “
␣

pftpuq ´ Uftpuq
(

pftpvqT ` Uftpuq
␣

pftpvq ´ Uftpvq
(T

. Then

›

›

›

1

n

n
ÿ

t“1

ppftpf
T
t ´ Uftf

T
t U

Tq

›

›

›

S,max
ď

›

›

›

1

n

n
ÿ

t“1

ppft ´ Uftqpf
T
t

›

›

›

S,max
`

›

›

›

1

n

n
ÿ

t“1

Uftppft ´ Uftq
T

›

›

›

S,max

ď

´ 1

n

n
ÿ

t“1

}pft ´ Uft}
2
¯1{2

˜

1

n

n
ÿ

t“1

}pft}
2

¸1{2

`

´ 1

n

n
ÿ

t“1

}pft ´ Uft}
2
¯1{2

˜

1

n

n
ÿ

t“1

}Uft}
2

¸1{2

“ Oppϖn,pq,

where the second inequality follows from the Cauchy–Schwarz inequality, and the last line follows from

n´1
řn

t“1 }pft ´ Uft}
2 “ OppM2

ε{n ` 1{pq by Theorem 1(ii), and n´1
řn

t“1 }Uft}
2 “ Opp1q since }U} “ 1

and E}ft}
2 “ Op1q. Together with Lemma B.12(i), the desired result follows immediately.

We are now ready to prove Theorem 5. Consider that

BΣfB
T ´ pBpΣf

pBT “ BUTUΣfU
TUBT ´ pBpΣf

pBT

“BUTpUΣfU
T ´ pΣf qUBT ` pBUT ´ pBqpΣfUBT ` pBpΣf pUBT ´ pBTq.

Then we have

}BΣfB
T ´ pBpΣf

pBT}S,max

ď}BUT}8}UΣfU
T ´ pΣf }S,max}UBT}1 ` 2}BUT ´ pB}8p}UΣfU

T}S,max ` }UΣfU
T ´ pΣf }S,maxq}BUT}8

ďr3C2}UΣfU
T ´ pΣf }S,max ` 2r5{2CprCmax ` }UΣfU

T ´ pΣf }S,maxq}BUT ´ pB}max

“OppMε{
?
n ` 1{

?
pq ` Oppϖn,pq “ Oppϖn,pq,

(B.4)

where the first inequality follows from Lemma A.9(i), the second inequality follows from }BUT}8 ď

r}BUT}max ď r}B}max}U}8 ď r3{2C provided that }U}8 ď
?
r}U} “

?
r, }BUT ´ pB}8 ď r}BUT ´

pB}max and }UΣfU
T}S,max ď Cmax}U}28 ď rCmax in Lemma B.17(i), and the last line follows from Lemma
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B.28 and }BUT ´ pB}max “ Oppϖn,pq in Theorem 1(i). Then note that

}pΣ
A

ε ´ Σε}S,max ď}pΣ
A

ε ´ pΣε}S,max ` }pΣε ´ Σε}S,max ď max
i,jPrps

p}pΘ
1{2
ij }Sλq ` Oppϖn,pq “ Oppϖn,pq,

where the last line follows from Lemma B.26(iii), the choice of λ “ 9Cp
a

log p{n`
a

1{pq À ϖn,p, and the

fact maxi,jPrps }pΘ
1{2
ij }S “ Opp1q by Lemma B.27. By combining (5), (12), and (B.4), we obtain the desired

result.

B.8 Proof of Theorem 6

For the sake of brevity, in this section, we suppose that the orthogonal matrix U in Theorem 1 and

Lemmas B.23–B.28 is an identity matrix, which means, when we perform eigen-decomposition on pΩ, we

can always select the correct direction of pξj to ensure
pξ
T

j
rbj ě 0. The proofs of Theorems 4 and 5 verify that

the choice of U does not affect the theoretical results. In this section, ppΣ
A

ε q:, pΣ
:

f and tpΣ
:

f ` pBTppΣ
A

ε q:
pBu:

are defined in a similar way to the inverse in Lemma B.15 associated with Σε,Σf and Σ:

f ` BTΣ:
εB,

respectively. To prove Theorem 6, we first present some technical lemmas with their proofs.

Lemma B.29. Under the assumptions of Theorem 6, then, pΣ
A

ε has a bounded Moore–Penrose inverse

with probability approaching one, and
›

›ppΣ
A

ε q: ´ Σ:
ε

›

›

L “ Oppϖ1´q
n,p spq.

Proof. Provided that ϖ1´q
n,p sp “ op1q and }Σ:

ε}L ă c3 for some constant c3 ą 0, we combine Lemma

B.15 and Theorem 4 to yield that }ppΣ
A

ε q:}L ă 2c3 with probability approaching one, and thus pΣ
A

ε has

a bounded Moore–Penrose inverse with probability approaching one together with the desired result
›

›ppΣ
A

ε q: ´ Σ:
ε

›

›

L “ Oppϖ1´q
n,p spq.

Lemma B.30. Under the assumptions of Theorem 6,

}pBTppΣ
A

ε q:
pB ´ BTΣ:

εB}L “ Opppϖ1´q
n,p spq “ opppq.

Proof. Consider

}pBTppΣ
A

ε q:
pB ´ BTΣ:

εB}L ď2}ppB ´ BqTppΣ
A

ε q:
pB}L ` }BTtppΣ

A

ε q: ´ Σ:
εuB}L

ď2}pB ´ B}}ppΣ
A

ε q:}L}B} ` }B}2}ppΣ
A

ε q: ´ Σ:
ε}L

“Opppϖn,pq ` Opppϖ1´q
n,p spq “ Opppϖ1´q

n,p spq “ opppq,

where the last line follows from Lemmas B.23 and B.29.

Lemma B.31. Under the assumptions of Theorem 6,

(i)
›

›pΣ:

f ` BTΣ:
εBq:

›

›

L “ Opp´1q;

(ii)
›

›tpΣ
:

f ` pBTppΣ
A

ε q:
pBu:

›

›

L “ Oppp´1q.

Proof. (i) Note that }pΣ:

f ` BTΣ:
εBq:}L ď }pBTΣ:

εBq:}L ď tλminpBTBqu´1}Σε}L “ Opp´1q, where the

first inequality follows from the fact Σf is a Mercer’s kernel.

(ii) Since }Σ:

f }L ă c4 and }pΣf ´ Σf }L “ Oppϖn,pq “ opp1q, by Lemma B.15, we have }pΣ
:

f ´ Σ:

f }L “

Oppϖn,pq. Thus, by Lemma B.30,
›

›

␣

pΣ
:

f ` pBTppΣ
A

ε q:
pB
(

´
␣

Σ:

f ` BTΣ:
εB

(
›

›

L “ opppq. Combining Lemma

B.15 and part (i), we obtain that
›

›tpΣ
:

f ` pBTppΣ
A

ε q:
pBu:

›

›

L “ Oppp´1q.
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We are now ready to prove Theorem 6. Using the functional version of the Sherman–Morrison–

Woodbury formula, we have }ppΣ
D

y q: ´ Σ:
y}L ď

ř4
k“1 Lk, where

L1 “
›

›ppΣ
A

ε q: ´ Σ:
ε

›

›

L,

L2 “
›

›

␣

ppΣ
A

ε q:
pB ´ Σ:

εB
(␣

pΣ
:

f ` pBTppΣ
A

ε q:
pB
(:
pBTppΣ

A

ε q:
›

›

L,

L3 “
›

›Σ:
εB

␣

pΣ
:

f ` pBTppΣ
A

ε q:
pB
(:␣

pBTppΣ
A

ε q: ´ BTΣ:
ε

(
›

›

L,

L4 “
›

›Σ:
εB

“␣

pΣ
:

f ` pBTppΣ
A

ε q:
pB
(:

´
␣

Σ:

f ` BTΣ:
εB

(:‰

BTΣ:
ε

›

›

L.

Clearly, L1 “ Oppϖ1´q
n,p spq by Lemma B.29. Then, note that }ppΣ

A

ε q:
pB ´ Σ:

εB}L ď }ppΣ
A

ε q: ´ Σ:
ε}L}pB} `

}Σ:
ε}L}pB ´ B} “ Opp

?
pϖ1´q

n,p spq. From Lemma B.31, we obtain that L2 — L3 “ Oppϖ1´q
n,p spq. Lastly,

since }pΣ:

f `BTΣ:
εBq:}L “ Opp´1q and }tpΣ

:

f ` pBTppΣ
A

ε q:
pBu ´ tΣ:

f `BTΣ:
εBu}L “ Opppϖ1´q

n,p spq “ opppq,

we apply Lemma B.15 to obtain that

›

›

›
tpΣ

:

f ` pBTppΣ
A

ε q:
pBu: ´ tΣ:

f ` BTΣ:
εBu:

›

›

›

L
“ Oppp´2qOpppϖ1´q

n,p spq “ Oppp´1ϖ1´q
n,p spq,

which implies that L4 “ Oppϖ1´q
n,p spq. Combining the above results, pΣ

D

y has a bounded Moore–Penrose

inverse with probability approaching one, and
›

›ppΣ
D

y q: ´ Σ:
y

›

›

L “ Oppϖ1´q
n,p spq.
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Horváth, L., Kokoszka, P. and Rice, G. (2014). Testing stationarity of functional time series, Journal of

Econometrics 179: 66–82.

Hsing, T. and Eubank, R. (2015). Theoretical Foundations of Functional Data Analysis, with an Intro-

duction to Linear Operators, John Wiley & Sons, Chichester.

Lam, C. and Yao, Q. (2012). Factor modelling for high-dimensional time series: Inference for the number

of factors, The Annals of Statistics 40: 694–726.

Leng, C., Li, D., Shang, H. L. and Xia, Y. (2024). Covariance function estimation for high-dimensional

functional time series with dual factor structures, arXiv preprint arXiv:2401.05784 .

Lou, D., Polk, C. and Skouras, S. (2019). A tug of war: Overnight versus intraday expected returns,

Journal of Financial Economics 134: 192–213.

Solea, E. and Li, B. (2022). Copula Gaussian graphical models for functional data, Journal of the American

Statistical Association 117: 781–793.

Tavakoli, S., Nisol, G. and Hallin, M. (2023). Factor models for high-dimensional functional time series

II: Estimation and forecasting, Journal of Time Series Analysis 44: 601–621.

Wang, H., Peng, B., Li, D. and Leng, C. (2021). Nonparametric estimation of large covariance matrices

with conditional sparsity, Journal of Econometrics 223: 53–72.

40



Weyl, H. (1912). Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differential-

gleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung), Mathematische Annalen

71: 441–479.

Xue, K., Yang, J. and Yao, F. (2024). Optimal linear discriminant analysis for high-dimensional functional

data, Journal of the American Statistical Association 119: 1055–1064.

Yu, Y., Wang, T. and Samworth, R. J. (2015). A useful variant of the Davis–Kahan theorem for statisti-

cians, Biometrika 102: 315–323.

Zhang, D. and Wu, W. B. (2021). Convergence of covariance and spectral density estimates for high-

dimensional locally stationary processes, The Annals of Statistics 49: 233–254.

Zhang, J.-T. and Chen, J. (2007). Statistical inferences for functional data, The Annals of Statistics

35: 1052–1079.

Zou, H. (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Associ-

ation 101: 1418–1429.

41



Supplementary Material to “Factor-guided estimation of large covariance matrix

function with conditional functional sparsity”

Dong Li, Xinghao Qiao and Zihan Wang

This supplementary material contains the proofs of the technical lemmas in the appendix in Section S.1,

and the remaining technical proofs in Sections S.2–S.3, further derivations in Section S.5, additional

simulation results in Section S.6 and additional real data result in Section S.7.

S.1 Proofs of theoretical lemmas in the appendix

S.1.1 Proof of Lemma A.5

(i) Note that
ş ş

Kpu, vqKpu, vqTdudv “
ş
ř8

i“1 λ
2
iϕipuqϕipuqTdu, and thus

tr
!

ż ż

Kpu, vqKpu, vqTdudv
)

“ tr
!

8
ÿ

i“1

λ2
i

ż

ϕipuqTϕipuqdu
)

“

8
ÿ

i“1

λ2
i .

The equality tr
␣ş ş

Kpu, vqKpu, vqTdudv
(

“ }K}2S,F can be verified by simple calculation. The first

equality can be obtained by Kpu, vqT “ KTpv, uq and the multiplication of kernel functions.

(ii) Similarly,

›

›

›

ż ż

Kpu, vqKpu, vqTdudv
›

›

›
“

›

›

›

ż 8
ÿ

i“1

λ2
iϕipuqϕipuqTdu

›

›

›
“ λmax

!

ż 8
ÿ

i“1

λ2
iϕipuqϕipuqTdu

)

“λmax

!

Λ2

ż

ΦpuqΦpuqTdu
)

“ λmax

!

Λ2

ż

ΦpuqTΦpuqdu
)

“λmaxpΛ2q “ λ2
1 “ }K}2L,

where Λ “ diagpλ1, λ2, . . . q,Φp¨q “ tϕ1p¨q,ϕ2p¨q, . . . u, and the fact that the 8ˆ8 matrix
ş

ΦpuqTΦpuqdu

shares the same nonzero eigenvalues with the pˆpmatrix
ş

ΦpuqΦpuqTdu, which can be obtained following

the proof of Proposition 2 in Bathia et al. (2010).

(iii) The equality holds by the definition of trace norm.

S.1.2 Proof of Lemma A.6

(i) Note that

›

›

›

ż ż

Kpu, vqGpu, vqTdudv
›

›

›

1
“max

jPrps

p
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż ż p
ÿ

k“1

Kikpu, vqGjkpu, vqdudv

ˇ

ˇ

ˇ

ˇ

ˇ

ďmax
jPrps

p
ÿ

i“1

p
ÿ

k“1

}Kik}S}Gjk}S

ď

´

max
kPrps

p
ÿ

i“1

}Kik}S

¯´

max
jPrps

p
ÿ

k“1

}Gjk}S

¯

“}K}S,1}G}S,8.

(S.1)
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(ii) By similar arguments, we obtain that

›

›

›

ż ż

Kpu, vqGpu, vqTdudv
›

›

›

8
ď }K}S,8}G}S,1. (S.2)

(iii) The inequality follows immediately from (S.1), (S.2), the matrix norm inequality }A}2 ď }A}8}A}1

for any p ˆ p matrix A and the choice of A “
ş ş

Kpu, vqGpu, vqTdudv.

(iv) An application of H:older’s inequality yields the result.

S.1.3 Proof of Lemma A.7

(i) By Lemma B.14 or Theorem 4.2.5 in Hsing and Eubank (2015), we have

}ΣrΣ}L “max
xPHp

@

x,ΣrΣpxq
D

}x}2
“ max

xPHp

A

rΣ
1{2

pxq,Σ
␣

rΣ
1{2

pxq
(

E

›

›

›

rΣ
1{2

pxq

›

›

›

2 ¨

@

x, rΣpxq
D

}x}2

ďmax
yPHp

@

y,Σpyq
D

}y}2
max
xPHp

@

x, rΣpxq
D

}x}2
“ }Σ}L ¨ }rΣ}L.

(ii) By Lemma A.5, }Σ}L “ λ1 and }Σ}F “

b

ř

iě1 λ
2
i , where tλiu

8
i“1 are the eigenvalues of Σ in a

descending order. Apparently, }Σ}L ď }Σ}S,F holds.

(iii) By Lemmas A.5(ii) and A.6(iii), }Σ}2L “
›

›

ş ş

Σpu, vqΣpu, vqTdudv
›

› ď }Σ}S,1}Σ}S,8. Furthermore, if

}Σij}S “ }Σji}S for all i, j P rps, we have }Σ}S,1 “ }Σ}S,8, and thus }Σ}L ď }Σ}S,1 holds.

S.1.4 Proof of Lemma A.8

(i) Note that

tr
!

ż

KGpu, uqdu
)

“tr
!

ż ż

Kpu, vqGpv, uqdudv
)

“

ż ż

trtKpu, vqGpv, uqududv

“tr
!

ż ż

Gpv, uqKpv, uqdvdu
)

“ tr
!

ż

GKpv, vqdv
)

.

(ii) Suppose that Kpu, vq “
ř8

i“1 λiϕipuqϕipvqT and Gpu, vq “
ř8

j“1 ωjψjpuqψjpvqT where tϕip¨qu and

tψjp¨qu are both orthonormal basis functions. Then, we have

tr
!

ż

KGpu, uqdu
)

“tr
!

ż ż

Kpu, vqGpv, uqdudv
)

“

8
ÿ

i“1

8
ÿ

j“1

λiωj

ż

ϕipvqTψjpvqdv

ż

ψjpuqTϕipuqdu

“

8
ÿ

i“1

8
ÿ

j“1

λiωj

ˇ

ˇxϕi,ψjy
ˇ

ˇ

2
ď

8
ÿ

i“1

λiωi

ď

ˆ

max
i

λi

˙ 8
ÿ

j“1

ωj “ }K}L}G}N “ }K}Ltr
!

ż

Gpu, uqdu
)

,

2



where the first inequality follows by using similar arguments to prove von Neumann’s trace inequality

(see Carlsson, 2021).

(iii) From Lemma A.5(i) and the part (ii) above, we have

}KG}2S,F “tr
!

ż

KGGTKTpu, uqdu
)

“ tr
!

ż

KTKGGTpu, uqdu
)

ď}KKT}Ltr
!

ż

GGTpu, uqdu
)

“ }K}2L}G}2S,F,

which implies the desired result.

S.1.5 Proof of Lemma A.9

(i) It follows that

}AK}S,max “ max
iPrps,jPrqs

›

›

›

q
ÿ

k“1

AikKkj

›

›

›

S
ď max

iPrps,jPrqs

q
ÿ

k“1

|Aik|}Kkj}S

ď

´

max
iPrps

q
ÿ

k“1

|Aik|

¯

¨ }K}S,max “ }A}8}K}S,max.

Further,

}KAT}S,max “}pKATqT}S,max “ }AKT}S,max ď }A}8}KT}S,max

“}A}8}K}S,max “ }AT}1}K}S,max.

(ii) It follows that

}AK}2S,F “

p
ÿ

i“1

q
ÿ

j“1

›

›

›

q
ÿ

k“1

AikKkj

›

›

›

2

S
ď

p
ÿ

i“1

q
ÿ

j“1

´

q
ÿ

k“1

A2
ik

q
ÿ

k“1

}Kkj}
2
S

¯

“

p
ÿ

i“1

q
ÿ

j“1

´

q
ÿ

k“1

q
ÿ

l“1

A2
ik}Klj}

2
S

¯

“

˜

p
ÿ

i“1

q
ÿ

k“1

A2
ik

¸˜

q
ÿ

l“1

q
ÿ

j“1

}Klj}
2
S

¸

“}A}F}K}S,F,

where the inequality follows from the Cauchy–Schwarz inequality. Furthermore,

}KAT}S,F “ }pKATqT}S,F “ }AKT}S,F ď }A}F}K}S,F “ }K}S,F}AT}F.

(iii)&(iv) It follows that

}AK}S,8 “max
iPrps

q
ÿ

k“1

q
ÿ

j“1

}AikKkj}S “ max
iPrps

q
ÿ

k“1

q
ÿ

j“1

|Aik|}Kkj}S

ďmax
iPrps

q
ÿ

k“1

q
ÿ

j“1

|Aik| max
k1Prqs

}Kk1j}S

“

´

max
iPrps

q
ÿ

k“1

|Aik|

¯´

max
k1Prqs

q
ÿ

j“1

}Kk1j}S

¯

“ }A}8}K}S,8.
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Furthermore,

}KAT}S,1 “ }AKT}S,8 ď }A}8}KT}S,8 “ }A}8}K}S,1.

The other two arguments can be proved similarly.

S.1.6 Proof of Lemma A.10

(i) By the definition, it follows that

}Af} “

!

ż

ftpuqTATAftpuqdu
)1{2

ď

!

ż

λmaxpATAqftpuqTftpuqdu
)1{2

“ }A} ¨ }f}.

(ii) By the Cauchy–Schwarz inequality,

}K}S “

”

ż ż

tfpuqTgpvqu2dudv
ı1{2

“

”

ż ż

␣

r
ÿ

j“1

fjpuqgjpvq
(2
dudv

ı1{2

ď

!

ż ż r
ÿ

j“1

fjpuq2
r
ÿ

j“1

gjpvq2dudv
)1{2

“

!

ż

fpuqTfpuqdu

ż

gpvqTgpvqdv
)1{2

“}f} ¨ }g}.

S.1.7 Proof of Lemma A.11

Let

p

qjp¨q for j P rrs be the columns of Qp¨q. By Assumption 1', we know that x

p

qi,

p

qjy “ pϑiIpi “ jq,

which implies that rqip¨q “ ppϑjq
´1{2

p

qjp¨q. Then, for j P rrs,

ż

tQpuqQpvqTurqjpvqdv “

r
ÿ

i“1

p

qipuqx

p

qi, rqjy “ pϑjrqjpuq,

which indicates that pϑj is the eigenvalue of Qp¨qQp¨qT with the corresponding eigenfunction rqjp¨q. Since

xrqi, rqjy “ Ipi “ jq for i, j P rrs, we can expand trqjp¨qujPrrs into a set of orthonormal basis functions in

Hp, denoted as trqjp¨qu8
j“1. Considering that xrqj , rqky “ 0 for any j ď r and k ě r ` 1, we obtain that

ş

tQpuqQpvqTurqkpvqdv “ 0 for k ě r ` 1. Thus, the rest eigenvalues of Qp¨qQp¨qT are zero.

S.1.8 Proof of Lemma B.12

(i)&(ii) See Theorem 2 and equations (2.15) in Fang et al. (2022) for the corresponding proofs.

(iii) The autocovariance matrix functions of tytp¨qutPZ at lag h satisfy Σ
phq
y p¨, ¨q “ BΣ

phq

f p¨, ¨qBT`Σ
phq
ε p¨, ¨q,

and the corresponding spectral density matrix function at frequency θ P r´π, πs is given by

fy,θ “
1

2π

ÿ

hPZ
Σphq

y expp´ihθq “
1

2π

ÿ

hPZ
BΣ

phq

f BT expp´ihθq `
1

2π

ÿ

hPZ
Σphq

ε expp´ihθq “ Bff,θB
T ` fε,θ.

4



By definition, the functional stability measure of tytp¨qutPZ is

My “2π ¨ ess sup
θPr´π,πs,ϕPHp

0

xϕ, fy,θpϕqy

xϕ,Σypϕqy

“2π ¨ ess sup
θPr´π,πs,ϕPHp

0

ş ş

ϕpuqTfy,θpu, vqϕpvqdudv
ş ş

ϕpuqTΣypu, vqϕpvqdudv

ď2π ¨ ess sup
θPr´π,πs,ϕPHp

0

ş ş

ϕpuqTBff,θpu, vqBTϕpvqdudv
ş ş

ϕpuqTBΣf pu, vqBTϕpvqdudv
` 2π ¨ ess sup

θPr´π,πs,ϕPHp
0

ş ş

ϕpuqTfε,θpu, vqϕpvqdudv
ş ş

ϕpuqTΣεpu, vqϕpvqdudv

ď2π ¨ ess sup
θPr´π,πs,ξPHr

0

xξ, ff,θpξqy

xξ,Σf pξqy
` 2π ¨ ess sup

θPr´π,πs,ϕPHp
0

xϕ, fε,θpϕqy

xϕ,Σεpϕqy

—Mf ` Mε — Mε.

The other conditions imposed by Fang et al. (2022) for tytp¨qutPZ can be easily verified. Then the desired

results can be obtained immediately by combining the above results.

S.1.9 Proof of Lemma B.15

(i) Notice that xx,Kpxqy “
ş ş

xpuqTKpu, vqxpvqdudv. Then for any x P Hp with }x} “ 1, we have

ˇ

ˇ

ˇ

ˇ

ż ż

xpuqTtKpu, vq ´ Gpu, vquxpvqdudv

ˇ

ˇ

ˇ

ˇ

ď }x}2 ¨ }K ´ G}L “ oppc´1
n q

Thus, for a sufficiently large n, xx,Kpxqy ě xx,Gpxqy ´ c´1
n {2 ą c´1

n {2 for any x P KerpGqK and }x} “ 1

with probability approaching one, since xx,Gpxqy ě
`

}G:}L
˘´1

ą c´1
n by using Lemma B.14. Hence, by

the definition of K:, it follows that }K:}L ă 2cn with probability approaching one.

(ii) Notice that

}K: ´ G:}L “ max
xPImpGq,}x}“1

xx,K:pxq ´ G:pxqy “ max
xPImpGq,}x}“1

xx,K:pG ´ KqG:pxqy

ď}G:}L ¨ max
yPKerpGqK,}y}“1

xy,K:pG ´ Kqpyqy ď }K ´ G}L}G:}L ¨ max
zPImpGq,}z}“1

xz,K:pzqy

ď}K:}L}K ´ G}L}G:}L “ Oppc2nq}K ´ G}L,

where the last equality follows from part (i).

S.1.10 Proof of Lemma B.16

The proofs of this lemma utilize the tail probabilities of sub-Gaussian process as presented in Section S.5.3.

(i) Notice that tftp¨qu and tεtp¨qu follow the sub-Gaussian functional linear process (see Section S.5.3) by

Assumption 4, with E}ft}
2 “ Op1q and E}p´1{2BTεt}

2 “ Op1q by Assumption 3(ii). By Bonferroni’s

method, it yields that, for each j P rrs and any given η ą 0,

P
"

max
tPrns

`

}ftj}
2 ´ E}ftj}

2
˘

ě η

*

ď

n
ÿ

t“1

P
`

}ftj}
2 ´ E}ftj}

2 ě η
˘

ď 2n expt´cminpη2, ηqu, (S.3)

where c ą 0 is some constant and the second inequality follows from Lemma 5 of Fang et al. (2022).

Letting η “ log n, (S.3) shows that maxtPrns }ft}
2 “ Opplog nq ` E}ft}

2, which implies that maxtPrns }ft} “

5



Opp
?
log nq. For the second argument, to satisfy Condition 10 in Fang et al. (2022) and apply their

Lemma 5, alternatively we consider that, for each j P rrs and any given η ą 0,

P
"

max
tPrns

`

p´1}bT
j εt}

2 ´ p´1E}bT
j εt}

2
˘

ě η

*

ď 2n expt´cminpη2, ηqu,

which implies that maxtPrns }p´1{2BTεt} “ Opp
?
log nq. Given that E}p´1{2εt}

2 “ Op1q by Assump-

tion 3(iv), we can also show that maxtPrns }p´1{2εt} “ Opp
?
log nq similarly.

(ii) The three arguments maxtPrns }γt} “ Opp
?
log nq,maxtPrns }p´1{2

ş

QpuqTεtpuqdu} “ Opp
?
log nq and

maxt1Prns |p´1{2txεt, εt1y ´ Exεt, εt1yu|2 “ Opplog nq for t P rns can be proved similarly to part (i), since

tγtu and tεtp¨qu are sub-Gaussian (functional) linear processes by Assumption 4', with moment condi-

tions E}γt}
2 “ Op1q,E}p´1{2

ş

QpuqTεtpuqdu}2 “ Op1q and E|p´1{2txεt, εt1y ´ Exεt, εt1yu|4 “ Op1q by

Assumption 3'(ii).

S.1.11 Proof of Lemma B.17

(i) In Assumption 1, we assume that

ż ż

Σf pu, vqΣf pu, vqTdudv “ diagpθ1, . . . , θrq,

i.e.,
ż ż r

ÿ

j“1

Σf,ijpu, vq2dudv “ θi, for i P rrs.

Then we have

}Σf }2S,max “ max
iPrrs,jPrrs

}Σf,ij}
2
S “ max

iPrrs,jPrrs

ż ż

Σf,ijpu, vq2dudv ď max
iPrrs

ż ż r
ÿ

j“1

Σf,ijpu, vq2dudv “ max
iPrrs

θi “ θ1,

which implies that }Σf }S,max ď θ
1{2
1 ” Cmax.

(ii) Note that Σf pu, vq P Rrˆr, we have maxp}Σf }S,8, }Σf }S,1, }Σf }S,Fq ď r}Σf }S,max ď rθ
1{2
1 ” C8.

S.1.12 Proof of Lemma B.18

(i) By Lemma A.9(i) and the fact }Σε}S,max ď }Σε}L, we have

}Σy}S,max “}BΣfB
T ` Σε}S,max ď }BΣfB

T}S,max ` }Σε}S,max

ď}B}8}Σf }S,max}BT}1 ` }Σε}S,max À r2C2Cmax ` Op1q — 1.

(ii) By Lemma A.9(iii), we have

}Σy}S,8 “}BΣfB
T ` Σε}S,8 ď }BΣfB

T}S,8 ` }Σε}S,8

ď}B}8}BT}8}Σf }S,8 ` }Σε}S,8 ď rpC2C8 ` sp À p.

Part (iii) can be proved similarly.

6



S.1.13 Proof of Lemma B.19

For the first part of the lemma, notice that }ΩL} ď }ΩL}F ď
?
r}ΩL} where r is the rank of ΩL, so

}ΩL} — }ΩL}F, and

}ΩL}2F “

›

›

›

›

pB

ż ż

Σf pu, vqΣf pu, vqTdudvBT

›

›

›

›

2

F

“ p4tr pdiagtθ1, . . . , θrudiagtθ1, . . . , θruTq “ p4
r
ÿ

j“1

θ2i — p4,

where the second equality follows from Assumption 1 that
ş ş

Σf pu, vqΣf pu, vqTdudv “ diagtθ1, . . . , θru

and BTB “ pIr. Thus we have }ΩL} — p2. For the second part, we have

}ΩR} ď

›

›

›

›

ż ż

Σεpu, vqΣεpu, vqTdudv

›

›

›

›

`

›

›

›

›

ż ż

BΣf pu, vqBTΣεpu, vqTdudv

›

›

›

›

`

›

›

›

›

ż ż

Σεpu, vqBΣf pu, vqTBTdudv

›

›

›

›

ď}Σε}2L ` 2}BΣfB
T}L}Σε}L “ Oppq,

where the second inequality follows from Lemmas A.5(ii) and A.6(iv), and the last line follows from

Assumption 3(iii) and Lemmas A.7(i)(ii) and B.17(ii).

S.1.14 Proof of Lemma B.20

Notice that

}ΩR}8 ď

›

›

›

ż ż

Σεpu, vqΣεpu, vqTdudv
›

›

›

8

`

›

›

›

ż ż

BΣf pu, vqBTΣεpu, vqTdudv
›

›

›

8
`

›

›

›

ż ż

Σεpu, vqBΣf pu, vqTBTdudv
›

›

›

8

ď}Σε}S,8}Σε}S,1 ` 2}BΣfB
T}S,8}Σε}S,1

ď}Σε}S,8}Σε}S,1 ` 2}Σε}S,1}B}8}BT}8}Σf }S,8

ďs2p ` 2rC2C8spp À s2p ` psp À psp “ opp2q,

where the second inequality follows from Lemma A.6(ii), the third inequality follows from Lemma A.9(iii),

and the fourth inequality follows from Lemma B.17.

S.1.15 Proof of Lemma B.23

By Proposition 1(ii) and Lemma B.19, if ξT
j
rbj ě 0, then

}ξj ´ rbj} “ Oppp´2}ΩR}q “ Oppp´1q, for j P rrs. (S.4)

Applying Lemma A.2 yields that, if pξ
T

j ξj ě 0, we have

}pξj ´ ξj} ď
}pΩ ´ Ω}{

?
2

min
`ˇ

ˇλ̂j´1 ´ λj

ˇ

ˇ,
ˇ

ˇλj ´ λ̂j`1

ˇ

ˇ

˘ , (S.5)

where tλ̂ju
p
j“1 are the eigenvalues of pΩ in a descending order, and tpξju

p
j“1 are their corresponding eigen-

vectors. Then, for j P rrs, we have |λ̂j´1´λj | ě |λ̂j´1´λ̂j |´|λj ´λ̂j |, where the first term |λ̂j´1´λ̂j | Á p2

7



with probability approaching one by Lemma B.22, and the second term |λj ´ λ̂j | “ oppp2q by Lemmas A.1

and B.21(i). Hence, |λ̂j´1 ´ λj | Á p2 with probability approaching one for all j P rrs. We can also show

the similar result for |λj ´ λ̂j`1| if j P rr ´ 1s. If j “ r, |λr ´ λ̂r`1| ą λr ´ λ̂r`1 “ p2θr ´ λ̂r`1 Á p2

since λ̂r`1 “ oppp2q, which can be implied by Proposition 1 and Lemma B.19 that λr`1 “ opp2q, and

Lemmas A.1 and B.21(i) that |λ̂r`1 ´ λr`1| “ oppp2q. Thus,

min
`

|λ̂j´1 ´ λj |, |λj ´ λ̂j`1|
˘

Á p2.

Applying (S.5), Lemma B.21(i) and the above argument, we have, if pξ
T

j ξj ě 0, then

}pξj ´ ξj} “ Op

`

Mε

a

1{n
˘

, for j P rrs.

Combining with (S.4) we have, if pξ
T

j
rbj ě 0, then

}pξj ´ rbj} “ Op

`

Mε

a

1{n ` 1{p
˘

, for j P rrs.

Since pbj “
?
ppξj and bj “

?
prbj , one can obtain that there exists an orthogonal matrix U P Rrˆr such

that

}pB ´ BUT}F “ Op

`

Mε

a

p{n ` 1{
?
p
˘

,

where the matrix U is used to adjust the direction so that each bT
j
pbj ě 0 for j P rrs.

S.1.16 Proof of Lemma B.27

We first prove the upper bound. By the definition of pΘij , we have

pΘijpu, vq “
1

n

n
ÿ

t“1

!

pεtipuqpεtjpvq ´
1

n

n
ÿ

s“1

pεsipuqpεsjpvq

)2

ď
2

n

n
ÿ

t“1

!

pεtipuqpεtjpvq ´ Σε,ijpu, vq

)2
` 2 max

iPrps,jPrps

!

Σε,ijpu, vq ´
1

n

n
ÿ

s“1

pεsipuqpεsjpvq

)2
,

which implies that

}pΘ
1{2
ij }2S “

ż ż

pΘijpu, vqdudv ď
2

n

ż ż n
ÿ

t“1

tpεtipuqpεtjpvq ´ Σε,ijpu, vqu
2 dudv ` 2}pΣε ´ Σε}2S,max

“
2

n

ż ż n
ÿ

t“1

!

pεtipuqpεtjpvq ´ Σε,ijpu, vq

)2
dudv ` opp1q,
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where the last line follows from Lemma B.26. Moreover

n
ÿ

t“1

!

pεtipuqpεtjpvq ´ Σε,ijpu, vq

)2

“

n
ÿ

t“1

”

␣

pεtipuq ´ εtipuq
(

pεtjpvq ` εtipuq
␣

pεtjpvq ´ εtjpvq
(

` εtipuqεtjpvq ´ Σε,ijpu, vq

ı2

ď4
n
ÿ

t“1

␣

pεtipuq ´ εtipuq
(2
pεtjpvq2 ` 4

n
ÿ

t“1

εtipuq2
␣

pεtjpvq ´ εtjpvq
(2

` 2
n
ÿ

t“1

␣

εtipuqεtjpvq ´ Σε,ijpu, vq
(2

ď4 max
iPrps,tPrns

␣

pεtipuq ´ εtipuq
(2

max
jPrps

”

n
ÿ

t“1

2
␣

pεtjpvq ´ εtjpvq
(2

` 3εtjpvq2
ı

` 2
n
ÿ

t“1

␣

εtipuqεtjpvq ´ Σε,ijpu, vq
(2
.

Here, we bound each term above as follows: (a) by Corollary 1, we have maxiPrps,tPrns }pεti ´ εti}
2 “

Oppϱ2q “ opp1q under Assumption 6; (b) by Lemma B.26(i), we have maxjPrps n
´1

řn
t“1 }pεtj ´ εtj}

2 “

Oppϖ2
n,pq “ opp1q; (c) by Lemma B.12(ii) and Assumption 3(iv), we have maxjPrps n

´1
řn

t“1 }εtj}
2 ď

opp1q ` maxjPrps

ş

Σε,jjpu, uqdu “ Opp1q. Combining these results yields that

}pΘ
1{2
ij }2S ď

2

n

ż ż n
ÿ

t“1

␣

εtipuqεtjpvq ´ Σε,ijpu, vq
(2
dudv ` opp1q.

Similar arguments as those in the proof of Lemma 2 of Cai and Liu (2011) results in

max
iPrps,jPrps

›

›

›

1

n

n
ÿ

t“1

pεtiεtj ´ Σε,ijq
2 ´ Varpεtiεtjq

›

›

›

S
“ opp1q.

Combining with Assumption 5 implies that maxiPrps,jPrps }n´1
řn

t“1pεtiεtj ´ Σε,ijq
2}S is bounded away

from both zero and infinity with probability approaching one. Therefore, maxi,jPrps }pΘ
1{2
ij }S is bounded

away from infinity with probability approaching one.

We next prove the lower bound. Notice that

1

n

n
ÿ

t“1

!

εtipuqεtjpvq ´ Σε,ijpu, vq

)2
ď4

n
ÿ

t“1

!

εtipuqεtjpvq ´ pεtipuqpεtjpvq

)2
` 4

n
ÿ

t“1

!

pεtipuqpεtjpvq ´
1

n

n
ÿ

s“1

pεsipuqpεsjpvq

)2

` 2
n
ÿ

t“1

! 1

n

n
ÿ

s“1

pεsipuqpεsjpvq ´ Σε,ijpu, vq

)2
,

which implies that

1

n

ż ż n
ÿ

t“1

!

εtipuqεtjpvq ´ Σε,ijpu, vq

)2
dudv ď

4

n

ż ż n
ÿ

t“1

rεtipuqεtjpvq ´ pεtipuqpεtjpvqs2dudv ` 4}pΘ
1{2
ij }2S ` opp1q,

where the LHS is bounded away from both zero and infinity uniformly in i, j. Then,

n
ÿ

t“1

!

εtipuqεtjpvq ´ pεtipuqpεtjpvq

)2
ď2

n
ÿ

t“1

εtipuq2
␣

εtjpvq ´ pεtjpvq
(2

` 2
n
ÿ

t“1

pεtjpvq2
␣

εtipvq ´ pεtipuq
(2

ď4 max
iPrps,tPrns

␣

pεtipuq ´ εtipuq
(2

max
jPrps

n
ÿ

t“1

”

␣

rpεtjpvq ´ εtjpvq
(2

` εtjpvq2
ı

.
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As demonstrated in the proof of the upper bound above, we have

1

n

ż ż n
ÿ

t“1

␣

εtipuqεtjpvq ´ pεtipuqpεtjpvq
(2
dudv “ opp1q.

Hence, miniPrps,jPrps }pΘ
1{2
ij }S is bounded away from zero with probability approaching one.

S.2 Proofs of theoretical results in Section 3

S.2.1 Technical lemmas and their proofs

Lemma S.1. Under Assumptions 3'(iv) and 4', we have that,

(i) for any i, j P rrs, |n´1
řn

t“1 γtiγtj ´ Σγ,ij | “ Opp1{
?
nq, }n´1

řn
t“1 γtγ

T
t ´ Σγ}max “ Opp1{

?
nq;

(ii) for any i, j P rps, }n´1
řn

t“1 εtiεtj´Σε,ij}S “ OppMε{
?
nq, }n´1

řn
t“1 εtε

T
t ´Σε}S,max “ OppMε

a

log p{nq;

(iii) for any i P rps, j P rrs, }n´1
řn

t“1 εtiγtj} “ OppMε{
?
nq, maxiPrps,jPrrs }n´1

řn
t“1 εtiγtj} “ OppMε

a

log p{nq.

Proof. For parts (i) and (ii), see Theorem 2 and equations (2.15) in Fang et al. (2022) for the corresponding

proofs. For part (iii), see Remark 3 and equation (2.16) in Fang et al. (2022) for a proof.

S.2.2 Proof of Theorem 1'

To prove Theorem 1', we first present some technical lemmas with their proofs.

Lemma S.2. Under Assumption 4', it holds that

max
tPrns

n
ÿ

t1“1

|Exεt1 , εty|

p
“ OpMεq, and max

t1,tPrns

|Exεt1 , εty|

p
“ OpMεq.

Proof. From Assumption 4', the functional stability measure of tεtp¨qutPZ is bounded (Mε ă 8), and we

would like to associate it with the equation of interest in this lemma. Since tεtp¨qutPZ is stationary, we

have, uniformly in n,

max
tPrns

n
ÿ

t1“1

|Exεt1 , εty|

p
ďmax

tPrns

1

p

p
ÿ

i“1

n
ÿ

t1“1

|Exεt1i, εtiy| ď max
tPrns

max
iPrps

n
ÿ

t1“1

|Exεt1i, εtiy|

ďmax
iPrps

8
ÿ

t1“´8

ˇ

ˇ

ˇ

ˇ

E
ż

ε1ipuqεt1ipuqdu

ˇ

ˇ

ˇ

ˇ

ďmax
iPrps

8
ÿ

t1“´8

"

E
ż

ε1ipuqεt1ipuqdu ¨

ż

ε1ipvqεt1ipvqdv

*1{2

ďmax
iPrps

8
ÿ

t1“´8

E
ż ż

ε1ipuqεt1ipvqdudv

“max
iPrps

ÿ

hPZ

ż ż

ϕipuqTΣphq
ε pu, vqϕipvqdudv

“2π ¨ max
iPrps

xϕi, fε,θ“0pϕiqy ď 2πωε
0 ¨ max

iPrps

xϕi, fε,θ“0pϕiqy

xϕi,Σεpϕiqy

ď2πωε
0 ¨ ess sup

θPr´π,πs,ϕPHp
0,ε

xϕ, fε,θpϕqy

xϕ,Σεpϕqy
“ ωε

0Mε “ OpMεq,
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where ϕip¨q “ p0, . . . , 1, . . . qT with its i-th element being 1 and the rest being 0, Hp
0,ε “ tϕ P Hp :

xϕ,Σεpϕqy P p0,8qu, fε,θ is the spectral density matrix function of tεtp¨qutPZ defined in Section 3.1, and

ωε
0 “ maxjPrps

ş

Σε,jjpu, uqdu. Furthermore, we also obtain that

max
t1,tPrns

|Exεt1 , εty|

p
ď max

tPrns

n
ÿ

t1“1

|Exεt1 , εty|

p
“ OpMεq.

Recall the definition of the asymptotically orthogonal matrix H introduced in Section 3.2. Applying

the equation (C.2) in Fan et al. (2013) or (A.1) in Bai (2003), we have

pγt ´ Hγt “

´V

p

¯´1! 1

n

n
ÿ

t1“1

pγt1

Exεt1 , εty

p
`

1

n

n
ÿ

t1“1

pγt1ζt1t `
1

n

n
ÿ

t1“1

pγt1ηt1t `
1

n

n
ÿ

t1“1

pγt1ξt1t

)

, (S.6)

where

ζt1t “
1

p
xεt1 , εty ´

1

p
Exεt1 , εty, ηt1t “

1

p
γT
t1

p
ÿ

i“1

ż

qipuqεtipuqdu, ξt1t “
1

p
γT
t

p
ÿ

i“1

ż

qipuqεt1ipuqdu.

Lemma S.3. Under the assumptions of Theorem 1', it holds that

(i) maxtPrns }pnpq´1
řn

t1“1 pγt1Exεt1 , εty} “ OppMε{
?
nq;

(ii) maxtPrns }n´1
řn

t1“1 pγt1ζt1t} “ Opp
a

log n{pq;

(iii) maxtPrns }n´1
řn

t1“1 pγt1ηt1t} “ Opp
a

log n{pq;

(iv) maxtPrns }n´1
řn

t1“1 pγt1ξt1t} “ Opp
a

log n{pq.

Proof. (i) By the Cauchy–Schwarz inequality and the fact that n´1
řn

t“1 }pγt}
2 “ Opp1q,

max
tPrns

›

›

›

1

np

n
ÿ

t1“1

pγt1Exεt1 , εty
›

›

›
ďmax

tPrns

«

1

n

n
ÿ

t1“1

}pγt1}
2 1

n

n
ÿ

t1“1

!Exεt1 , εty

p

)2
ff1{2

ďOpp1qmax
tPrns

«

1

n

n
ÿ

t1“1

!Exεt1 , εty

p

)2
ff1{2

ďOpp1q max
t1,tPrns

ˇ

ˇ

ˇ

ˇ

Exεt1 , εty

p

ˇ

ˇ

ˇ

ˇ

1{2

max
tPrns

#

1

n

n
ÿ

t1“1

ˇ

ˇ

ˇ

ˇ

Exεt1 , εty

p

ˇ

ˇ

ˇ

ˇ

+1{2

“OppMε{
?
nq,

where the last equality follows from Lemma S.2.

(ii) By the Cauchy–Schwarz inequality and the fact that n´1
řn

t“1 }pγt}
2 “ Opp1q,

max
tPrns

›

›

›

1

n

n
ÿ

t1“1

pγt1ζt1t

›

›

›
ďmax

tPrns

1

n

´

n
ÿ

t1“1

}pγt1}
2

n
ÿ

t1“1

ζ2t1t

¯1{2
“ Opp1q

´

max
tPrns

1

n

n
ÿ

t1“1

ζ2t1t

¯1{2

“Opp1q

#

max
tPrns

1

n

n
ÿ

t1“1

´1

p
xεt1 , εty ´

1

p
Exεt1 , εty

¯2
+1{2

“ Opp
a

log n{pq,
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where the last equality follows from Lemma B.16(ii).

(iii) By the Cauchy–Schwarz inequality and the fact that }n´1
řn

t1“1 pγt1γT
t1} “ Opp1q,

max
tPrns

›

›

›

›

›

1

n

n
ÿ

t1“1

pγt1ηt1t

›

›

›

›

›

ď

›

›

›

›

›

1

n

n
ÿ

t1“1

pγt1γT
t1

›

›

›

›

›

max
tPrns

›

›

›

›

›

1

p

p
ÿ

i“1

ż

qipuqεtipuqdu

›

›

›

›

›

“ Opp
a

log n{pq,

where the last equality follows from Lemma B.16(ii).

(iv) By Assumption 3'(ii), we can show that }pnpq´1
řn

t1“1

řp
i“1

ş

qipuqεt1ipuqdupγt1} “ Opp1{
?
pq. Addi-

tionally, maxtPrns }γt} “ Opp
?
log nq by Lemma B.16(ii). The desired result follows immediately that

max
tPrns

›

›

›

1

n

n
ÿ

t1“1

pγt1ξt1t

›

›

›
ď max

tPrns
}γt}

›

›

›

1

np

n
ÿ

t1“1

p
ÿ

i“1

ż

qipuqεt1ipuqdupγt1

›

›

›
“ Opp

a

log n{pq.

Lemma S.4. Denote pγt “ ppγt1, . . . , pγtrqT. Under the assumptions of Theorem 1', it holds that, for i P rrs,

(i) n´1
řn

t“1rpnpq´1
řn

t1“1 pγt1iExεt1 , εtys2 “ OppM2
ε{nq;

(ii) n´1
řn

t“1pn´1
řn

t1“1 pγt1iζt1tq
2 “ Opp1{pq;

(iii) n´1
řn

t“1pn´1
řn

t1“1 pγt1iηt1tq
2 “ Opp1{pq;

(iv) n´1
řn

t“1pn´1
řn

t1“1 pγt1iξt1tq
2 “ Opp1{pq.

Proof. (i) By the Cauchy–Schwarz inequality and the fact that
řn

t1“1 pγ
2
t1i “ n,

1

n

n
ÿ

t“1

˜

1

n

n
ÿ

t1“1

pγt1i
Exεt1 , εty

p

¸2

ď
1

n

n
ÿ

t“1

1

n

´

n
ÿ

t1“1

pγ2t1i

¯ 1

n

n
ÿ

t1“1

ˆ

Exεt1 , εty

p

˙2

“
1

n

n
ÿ

t“1

1

n

n
ÿ

t1“1

ˆ

Exεt1 , εty

p

˙2

ď max
tPrns

1

n

n
ÿ

t1“1

ˆ

Exεt1 , εty

p

˙2

ď max
t1,tPrns

ˇ

ˇ

ˇ

ˇ

Exεt1 , εty

p

ˇ

ˇ

ˇ

ˇ

max
tPrns

1

n

n
ÿ

t1“1

ˇ

ˇ

ˇ

ˇ

Exεt1 , εty

p

ˇ

ˇ

ˇ

ˇ

“ OpM2
ε{nq,

where the last equality follows from Lemma S.2.

(ii) By the Cauchy–Schwarz inequality and the fact that
řn

t1“1 pγ
2
t1i “ n,

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iζt1t

¯2
“

1

n3

ÿ

t1,lPrns

!

pγt1ipγli

´

n
ÿ

t“1

ζt1tζlt

¯)

ď
1

n3

!

ÿ

t1,lPrns

pγ2t1ipγ
2
li

ÿ

t1,lPrns

´

n
ÿ

t“1

ζt1tζlt

¯2)1{2

ď
1

n3

n
ÿ

t1“1

pγ2t1i

!

ÿ

t1,lPrns

´

n
ÿ

t“1

ζt1tζlt

¯2)1{2
“

1

n2

!

ÿ

t1,lPrns

´

n
ÿ

t“1

ζt1tζlt

¯2)1{2
.

Notice that E
␣
ř

t1,lPrnsp
řn

t“1 ζt1tζltq
2
(

“ n2Ep
řn

t“1 ζt1tζltq
2 ď n4maxt1,t E|ζt1t|

4, and by Assumption 3'(ii)
we have maxt1,t E|ζt1t|

4 “ Op1{p2q, which yields the desired result by using Chebyshev’s inequality.
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(iii) By the Cauchy–Schwarz inequality, and the facts that
řn

t1“1 pγ
2
t1i “ n and n´1

řn
t1“1 }γt1}2 “ Opp1q,

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iηt1t

¯2
ď

›

›

›

1

n

n
ÿ

t1“1

pγt1iγ
T
t1

›

›

›

2 1

n

n
ÿ

t“1

›

›

›

1

p

p
ÿ

j“1

ż

qjpuqεtjpuqdu
›

›

›

2

ď

´ 1

n

n
ÿ

t1“1

pγ2t1i

1

n

n
ÿ

t1“1

}γt1}
2
¯ 1

np2

n
ÿ

t“1

›

›

›

p
ÿ

j“1

ż

qjpuqεtjpuqdu
›

›

›

2

“Opp1q ¨
1

np2

n
ÿ

t“1

›

›

›

p
ÿ

j“1

ż

qjpuqεtjpuqdu
›

›

›

2
.

Notice E}
řp

j“1

ş

qjpuqεtjpuqdu}2 “ Oppq by Assumption 3'(ii), which implies n´1Er
řn

t“1 }
řp

j“1

ş

qjpuqεtjpuqdu}2s “

Oppq and yields the result.

(iv) By the Cauchy–Schwarz inequality, and the facts that
řn

t1“1 pγ
2
t1i “ n and n´1

řn
t1“1 }γt1}2 “ Opp1q,

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iξt1t

¯2
ď

´ 1

n

n
ÿ

t“1

}γt}
2
¯›

›

›

1

np

n
ÿ

t1“1

pγt1i

p
ÿ

j“1

ż

qjpuqεt1jpuqdu
›

›

›

2

ďOpp1q ¨

´ 1

n

n
ÿ

t1“1

pγ2t1i

¯ 1

np2

n
ÿ

t1“1

›

›

›

p
ÿ

j“1

ż

qjpuqεt1jpuqdu
›

›

›

2
“ Opp1{pq,

where the result in the last equality has been obtained in part (iii).

Lemma S.5. Let tτ̂ju
r
j“1 be the first r largest eigenvalues of pΣ

S

y p¨, ¨q in a descending order. Under the

assumptions of Theorem 1', it holds that τ̂r Á p with probability approaching one.

Proof. By Proposition 2, we obtain that

τr ě }pϑr}2 ´ |τr ´ pϑr| Á p ´ sp — p.

To show τ̂r Á p with probability approaching one, it suffices to show that |τ̂r ´ τr| “ opppq. By applying

Lemma A.3 again, we only need to show }pΣ
S

y ´ Σy}S,F “ opppq. Note that

}pΣ
S

y ´ Σy}S,F “

›

›

›

1

n

n
ÿ

t“1

pQγt ` εtqpQγt ` εtq
T ´ QQT ´ Σε

›

›

›

S,F

ď

›

›

›
Q
` 1

n

n
ÿ

t“1

γtγ
T
t ´ Ir

˘

QT

›

›

›

S,F
`

›

›

›

1

n

n
ÿ

t“1

εtε
T
t ´ Σε

›

›

›

S,F

`

›

›

›
Q
`

n´1
n
ÿ

t“1

γtε
T
t

˘

›

›

›

S,F
`

›

›

›

` 1

n

n
ÿ

t“1

εtγ
T
t

˘

QT

›

›

›

S,F

ď

›

›

›
n´1

n
ÿ

t“1

γtγ
T
t ´ Ir

›

›

›

F
¨
›

›QQT
›

›

S,F `

´

p
ÿ

i“1

p
ÿ

j“1

›

›n´1
n
ÿ

t“1

εtiεtj ´ Σε,ij

›

›

2

S

¯1{2

` 2
´

p
ÿ

i“1

r
ÿ

j“1

›

›n´1
n
ÿ

t“1

εtiγtj
›

›

2
¯1{2

¨
?
pmax

iPrps
}qi}

“Oppp{
?
nq ` OpppMε

a

1{nq ` OpppMε

a

1{nq “ opppq,

where the second inequality follows from Lemma A.9(ii), the fact }K}S,F ď p}K}S,max any Kp¨, ¨q P

13



Hp b Hp, and the Cauchy–Schwarz inequality. The last line of the above equation follows from Lemma

S.1, M2
ε “ opnq, and the fact

}QQT}S,F “

”

p
ÿ

i“1

p
ÿ

j“1

ż

␣

qipuqTqjpvq
(2
dudv

ı1{2
ď pmax

iPrps
}qi}

2 — p.

Therefore, we have obtained that τ̂r Á p with probability approaching one.

Lemma S.6. Under the assumptions of Theorem 1', it holds that

(i) }H} “ Opp1q;

(ii) HHT “ Ir ` OppMε{
?
n ` 1{

?
pq;

(iii) HTH “ Ir ` OppMε{
?
n ` 1{

?
pq.

Proof. (i) By Lemma S.5, }V´1} “ τ̂´1
r “ Oppp´1q. Also, }pΓ} “ λ

1{2
maxppΓ

T
pΓq “ λ

1{2
maxpnIrq “

?
n from

the normalization (A.1), and }Γ} “ λ
1{2
maxpΓTΓq “ λ

1{2
maxp

řn
t“1 γtγ

T
t q “ Opp

?
nq by Lemma S.1(i). In

addition, }
ş

QpuqTQpuqdu} “ Oppq. By the definition of H, i.e., H “ n´1V´1
pΓ

T

Γ
ş

QpuqTQpuqdu, we

have }H} “ Opp1q, which is also satisfied for }H}F since H P Rrˆr.

(ii) Notice that

}HHT ´ Ir}F ď

›

›

›
HHT ´

1

n

n
ÿ

t“1

Hγtγ
T
t H

T

›

›

›

F
`

›

›

›

1

n

n
ÿ

t“1

Hγtγ
T
t H

T ´ Ir

›

›

›

F
. (S.7)

In (S.7), the first term can be bound by }HHT ´ n´1
řn

t“1Hγtγ
T
t H

T}F ď }H}2F}Ir ´ n´1
řn

t“1 γtγ
T
t }F “

Opp1{
?
nq by Lemma S.1(i). The second term can be bounded by

›

›

›

1

n

n
ÿ

t“1

Hγtγ
T
t H

T ´ Ir

›

›

›

F
“

›

›

›

1

n

n
ÿ

t“1

Hγtγ
T
t H

T ´
1

n

n
ÿ

t“1

pγtpγ
T

t

›

›

›

F

ď

›

›

›

1

n

n
ÿ

t“1

pHγt ´ pγtqγ
T
t H

T

›

›

›

F
`

›

›

›

1

n

n
ÿ

t“1

pγtppγ
T

t ´ γT
t H

Tq

›

›

›

F

ď

´ 1

n

n
ÿ

t“1

}Hγt ´ pγt}
2 1

n

n
ÿ

t“1

}Hγt}
2
¯1{2

`

´ 1

n

n
ÿ

t“1

}Hγt ´ pγt}
2 1

n

n
ÿ

t“1

}pγt}
2
¯1{2

“OppMε{
?
n ` 1{

?
pq,

where the third line follows from Cauchy–Schwarz inequality, and the last line follows from Theorem 1'(i)
and the fact n´1

řn
t“1 }pγt}

2 “ Opp1q.

(iii) From part (ii), we have HHT “ Ir ` OppMε{
?
n ` 1{

?
pq and }H} “ Opp1q. Therefore

HHTH “ H ` OppMε{
?
n ` 1{

?
pq.

Also, }H´1} ď }H} ` opp1q}H´1}, which implies that }H´1} “ Opp1q. Multiplying the LHS of the above

by H´1 yields that HTH “ Ir ` OppMε{
?
n ` 1{

?
pq.

We are now ready to prove Theorem 1'.
(i) By Lemma S.5, the diagonal elements of V{p “ diagpτ̂1{p, . . . , τ̂r{pq are bounded away from 0. By the
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inequality pa ` b ` c ` dq2 ď 4pa2 ` b2 ` c2 ` d2q, equation (S.6) and Lemma S.4, we have

max
iPrrs

1

n

n
ÿ

t“1

ppγt ´ Hγtq
2
i Àmax

iPrrs

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1i
Exεt1 , εty

p

¯2
` max

iPrrs

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iζt1t

¯2

` max
iPrrs

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iηt1t

¯2
` max

iPrrs

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iξt1t

¯2

“Op

`

M2
ε{n ` 1{p

˘

.

The desired result immediately follows that

1

n

n
ÿ

t“1

}pγt ´ Hγt}
2 ď rmax

iPrrs

1

n

n
ÿ

t“1

ppγt ´ Hγtq
2
i “ Op

`

M2
ε{n ` 1{p

˘

.

(ii) Note }pV{pq´1} “ Op1q. Applying the inequality pa ` b ` c ` dq2 ď 4pa2 ` b2 ` c2 ` d2q, equation

(S.6) and Lemma S.3, we have

max
tPrns

}pγt ´ Hγt} Àmax
tPrns

›

›

›

1

np

n
ÿ

t1“1

pγt1Exεt1 , εty
›

›

›
` max

tPrns

›

›

›

1

n

n
ÿ

t1“1

pγt1ζt1t

›

›

›

` max
tPrns

›

›

›

1

n

n
ÿ

t1“1

pγt1ηt1t

›

›

›
` max

tPrns

›

›

›

1

n

n
ÿ

t1“1

pγt1ξt1t

›

›

›

“OppMε{
?
n `

a

log p{nq.

(iii) Using the facts that pqip¨q “ n´1
řn

t“1 ytip¨qpγt and ytip¨q “ qip¨qTγt ` εtip¨q, we have, for i P rps

pqip¨q ´ Hqip¨q “
1

n

n
ÿ

t“1

ytip¨qpγt ´
1

n

n
ÿ

t“1

Hγt

␣

ytip¨q ´ qip¨qTγt ` εtip¨q
(

´ Hqip¨q

“
1

n

n
ÿ

t“1

Hγtεtipuq `
1

n

n
ÿ

t“1

ytip¨qppγt ´ Hγtq ` H
´ 1

n

n
ÿ

t“1

γtγ
T
t ´ Ir

¯

qip¨q.

(S.8)

The first term in (S.8) can be bounded by

max
iPrps

›

›

›

1

n

n
ÿ

t“1

Hγtεti

›

›

›
ď }H}max

iPrps

!

r
ÿ

j“1

›

›

›

1

n

n
ÿ

t“1

γtjεti

›

›

›

2)1{2
“ Op

´

Mε

a

log p{n
¯

,

where the inequality follows from Lemma A.10(i), and the last equality follows from Lemmas S.1(iii) and

S.6(i). For the second term, since Σy,ii “ qT
i Σγqi ` Σε,ii with maxiPrps }qi} “ Op1q and }Σε}S,max ď

}Σε}L “ Op1q by Assumption 3'(i)(iii), we have maxiPrps }Σy,ii}S “ maxiPrps E}yti}
2 “ Op1q, and thus

maxiPrps n
´1

řn
t“1 }yti}

2 “ Opp1q by Chebyshev’s inequality. Using the Cauchy–Schwarz inequality in the

second term of (S.8), we obtain that

max
iPrps

›

›

›

1

n

n
ÿ

t“1

ytippγt ´ Hγtq

›

›

›
ď max

iPrps

´ 1

n

n
ÿ

t“1

}yti}
2
¯1{2´ 1

n

n
ÿ

t“1

}pγt ´ Hγt}
2
¯1{2

“ Op

`

Mε{
?
n ` 1{

?
p
˘

.

In addition, }H} “ Opp1q from Lemma S.6(i), }n´1
řn

t“1 γtγ
T
t ´ Ir} “ Opp1{

?
nq from Lemma S.1(i) and

15



maxiPrps }qi} “ Op1q from Assumption 3'(i) yield that the third term is of order Opp1{
?
nq. Combining

the above results, we obtain that

max
iPrps

}pqi ´ Hqi} “ Op

`

Mε

a

log p{n ` 1{
?
p
˘

“ Oppϖn,pq.

S.2.3 Proof of Corollary 1'

By Theorem 1'(ii)(iii), Lemmas S.6(ii) and B.16(ii), we have

max
iPrps,tPrns

}pqT
i pγt ´ qT

i γt} ďmax
iPrps

}pqi ´ Hqi} ¨ max
tPrns

}pγt ´ Hγt} ` max
iPrps

}Hqi} ¨ max
tPrns

}pγt ´ Hγt}

` max
iPrps

}pqi ´ Hqi} ¨ max
tPrns

}Hγt} ` max
iPrps

}qi} ¨ max
tPrns

}γt} ¨ }HTH ´ Ir}

“Op

!

ϖn,p ¨ pMε{
?
n `

a

log n{pq

)

` Op

`

Mε{
?
n `

a

log n{p
˘

` Op

`

ϖn,p ¨
a

log n
˘

` Op

!

a

log n ¨ pMε{
?
n ` 1{

?
pq

)

“Op

␣

Mε

a

log n log p{n `
a

log n{p
(

.

S.2.4 Proof of Theorem 4'

To prove Theorem 4', we first present a technical lemma with its proof.

Lemma S.7. Under the assumptions of Theorem 4', it holds that

(i) maxiPrps n
´1

řn
t“1 }pεti ´ εti}

2 “ Oppϖ2
n,pq;

(ii) maxi,jPrps }n´1
řn

t“1 pεtipεtj ´ n´1
řn

t“1 εtiεtj}S “ Oppϖn,pq;

(iii) }rΣε ´ Σε}S,max “ Oppϖn,pq.

Proof. (i) Note that εtip¨q´pεtip¨q “
␣

ytip¨q´qip¨qTγt

(

´
␣

ytip¨q´pqip¨qTpγt

(

“ pqip¨qTpγt´qip¨qTγt, which can

be decomposed as pqip¨qTpγt ´qip¨qTγt “
␣

pqip¨qT ´qip¨qTH
(

pγt `qip¨qTHTppγt ´Hγtq `qip¨qTpHTH´Irqγt.

Applying the inequality pa ` b ` cq2 ď 3a2 ` 3b2 ` 3c2 and the Cauchy–Schwarz inequality yields that

max
iPrps

1

n

n
ÿ

t“1

}pεti ´ εti}
2 ď3max

iPrps
}pqi ´ Hqi}

2 1

n

n
ÿ

t“1

}pγt}
2 ` 3max

iPrps
}qi}

2}H}2
1

n

n
ÿ

t“1

}pγt ´ Hγt}
2

` 3max
iPrps

}qi}
2}HTH ´ Ir}2

n
ÿ

t“1

}γt}
2

“Oppϖ2
n,pq ` OppM2

ε{n ` 1{pq “ Oppϖ2
n,pq.

(ii) Notice that maxiPrps E}εti}
2 “ maxiPrps E

ş

εtipuq2du “ maxiPrps

ş

Σε,iipu, uqdu “ Op1q from Assump-

tion 3'(iv), thus we have maxiPrps n
´1

řn
t“1 }εti}

2 “ Opp1q. By the Cauchy–Schwarz inequality, we have

max
i,jPrps

›

›

›

1

n

n
ÿ

t“1

pεtipεtj ´
1

n

n
ÿ

t“1

εtiεtj

›

›

›

S
“ max

i,jPrps

›

›

›

1

n

n
ÿ

t“1

ppεti ´ εtiqpεtj ` εtippεtj ´ εtjq
›

›

›

S

ďmax
iPrps

1

n

n
ÿ

t“1

}pεti ´ εti}
2 ` 2

´

max
iPrps

1

n

n
ÿ

t“1

}εti}
2
¯1{2´

max
jPrps

1

n

n
ÿ

t“1

}pεtj ´ εtj}
2
¯1{2

“Oppϖ2
n,pq ` Oppϖn,pq “ Oppϖn,pq.
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(iii) By part (ii) and Lemma S.1(ii), the result follows immediately.

We are now ready to prove Theorem 4'. By Corollary 1' and Lemma S.7(i), we can follow nearly

the same procedure as in the proof of Theorem 4 to show the similar argument that there exist some

constants C1, C2 ą 0 such that with probability approaching one,

C1 ď min
iPrps,jPrps

}rΘ
1{2
ij }S ď max

iPrps,jPrps
}rΘ

1{2
ij }S ď C2.

Together with Lemmas S.7(iii), we can show that for any ϵ ą 0, there exist some positive constant N

such that each of events

rΥ1 “

"

max
iPrps,jPrps

›

›

›

rΣε,ij ´ Σε,ij

›

›

›

S
ă Nϖn,p

*

, rΥ2 “

!

C1 ď
›

›rΘ
1{2
ij

›

›

S ď C2, all i, j P rps

)

hold with probability at least 1 ´ ϵ. Then for 9C ą 2NC´1
1 pϖn,p{ωn,pq and under the event rΥ1 X rΥ2, we

obtain that }rΣ
A

ε ´Σε}S,1 À ϖ1´q
n,p sp by using the same way as the proof of Theorem 4. By Proposition 3,

we know that pRA “ rΣ
A

ε . Therefore, with probability at least 1´2ϵ, }pRA ´Σε}S,1 À ϖ1´q
n,p sp. Considering

that ϵ ą 0 can be arbitrarily small, we have }pRA ´ Σε}L ď }pRA ´ Σε}S,1 “ Oppϖ1´q
n,p spq.

S.2.5 Proof of Theorem 5'

Under Assumption 1', we have Σypu, vq “ QpuqQpvqT ` Σεpu, vq. By the Cauchy–Schwarz inequality

and Lemma A.10, we have

}pQpQT ´ QQT}S,max “ max
i,jPrps

}pqT
i pqj ´ qT

i qj}S

ď max
i,jPrps

t}ppqi ´ Hqiq
T
pqj}S ` }qT

i H
Tppqj ´ Hqjq}S ` }qT

i pHTH ´ Irqqj}Su

ďmax
iPrps

}pqi ´ Hqi}
2 ` 2}H}max

iPrps
}qj}}pqi ´ Hqi} ` }HTH ´ Ir}max

iPrps
}qi}

2

“Oppϖ2
n,pq ` Oppϖn,pq ` OppMε{

?
n ` 1{

?
pq “ Oppϖn,pq,

where the last line follows from Theorem 1'(iii) and Lemma S.6. Then by Lemma S.7, we have }rΣε ´

Σε}S,max “ maxi,jPrps }rΣε,ij ´ Σε,ij}S “ Oppϖn,pq, and hence

}rΣ
A

ε ´ Σε}S,max ď }rΣ
A

ε ´ rΣε}S,max ` }rΣε ´ Σε}S,max ď max
i,jPrps

p}rΘ
1{2
ij }Sλq ` Oppϖn,pq “ Oppϖn,pq,

where rΘijpu, vq ” n´1
řn

t“1

␣

pεtipuqpεtjpvq ´ rΣε,ijpu, vq
(2
, the last line follows from Lemma S.7(iii), the

choice of λ “ 9Cp
a

log p{n `
a

1{pq À ϖn,p, and the fact maxi,jPrps }rΘ
1{2
ij }S “ Opp1q that can be proved

following a similar argument compared to the proof of Lemma B.27. The desired result follows immedi-

ately.

S.2.6 Proof of Theorem 6'

Given KerpΣεq “ KerpQΣγQ
Tq, with the covariance decomposition for FPOET estimator Σypu, vq “

QpuqΣγQpvqT ` Σεpu, vq, we apply Sherman–Morrison–Woodbury formula (Theorem 3.5.6 of Hsing and

Eubank (2015)) to obtain its inverse Σ:
y “ Σ:

ε´Σ:
εQpIr`QTΣ:

εQq:QTΣ:
ε (note that under Assumption 1',

17



Σγ “ Ir and pΣγ “ Ir). Then, the plug-in inverse FPOET estimator is defined as ppΣ
F

y q: “ ppRAq: ´

ppRAq:
pQtIr ` pQTppRAq:

pQu:
pQTppRAq:. In this section, ppRAq: and tIr ` pQTppRAq:

pQu: are defined in a similar

way to the inverse in Lemma B.15 associated with Σε and Ir`QTΣ:
εQ, respectively. To prove Theorem 6',

we first present some technical lemmas with their proofs.

Lemma S.8. Under the assumptions of Theorem 6', then, pRA has a bounded Moore–Penrose inverse

with probability approaching one, and
›

›ppRAq: ´ Σ:
ε

›

›

L “ Oppϖ1´q
n,p spq.

Proof. Provided that ϖ1´q
n,p sp “ op1q and }Σ:

ε}L ą c5 for some constant c5 ą 0, we combine Lemma

B.15 and Theorem 4' to yield that }ppRAq:}L ă 2c5 with probability approaching one, and thus pRA

has a bounded Moore–Penrose inverse with probability approaching one together with the desired result
›

›ppRAq: ´ Σ:
ε

›

›

L “ Oppϖ1´q
n,p spq.

Lemma S.9. Under the assumptions of Theorem 6',

}pQTppRAq:
pQ ´ HQTΣ:

εQHT}L “ Opppϖ1´q
n,p spq “ opppq.

Proof. In model (2), Qp¨q can be viewed as a bounded linear operator from Rr to Hp, and thus we can

also regard it as a kernel matrix function satisfying Qpu, vq ” Qpuq,@u, v P U . From this perspective,

}Q}2S,F “
řp

i“1 }qi}
2 “

ş

QpuqTQpuqdu “ ppϑ1 ` ¨ ¨ ¨ ` ϑrq — p under Assumption 1'. By Theorem 1'(iii),

}pQ ´ QHT}S,F “
␣
řp

i“1 }pqi ´ Hqi}
2
(1{2

“ Opp
?
pϖn,pq. Hence,

}pQTppRAq:
pQ ´ HQTΣ:

εQHT}L ď2}ppQ ´ QHTqTppRAq:
pQ}L ` }HQTtppRAq: ´ Σ:

εuQHT}L

ď2}pQ ´ QHT}S,F}ppRAq:}L}Q}S,F ` }Q}2S,F}H}2}ppRAq: ´ Σ:
ε}L

“Opppϖn,pq ` Opppϖ1´q
n,p spq “ Opppϖ1´q

n,p spq “ opppq,

where the second inequality follows from Lemma A.7(i)(ii), and the last line follows from Lemmas S.6

and S.8.

Lemma S.10. Under the assumptions of Theorem 6',
(i) }pIr ` HQTΣ:

εQHTq:}L “ Opp´1q;

(ii) }tIr ` pQTppRAq:
pQu:}L “ Oppp´1q;

(iii) }pIr ` QTΣ:
εQq:}L “ Opp´1q;

(iv) }tpHHTq: ` QTΣ:
εQu:}L “ Opp´1q.

Proof. (i) By Lemma S.6, with probability approaching one, λminpHHTq is bounded away from 0. Hence,

}pIr ` HQTΣ:
εQHTq:}L ď }pHQTΣ:

εQHTq:}L ď tλminpHTHqu´1}Σε}L}pQQTq:}L “ Opp´1q,

where }pQQTq:}L “ ppϑrq´1 by Assumption 1' and }Σε}L “ Op1q by Assumption 3'(iii).
(ii) The result follows from part (i) and Lemmas B.15 and S.9.

(iii) The result follows from a similar argument to that for part (i).

(iv) The result follows from part (iii) and Lemmas B.15 and S.6.
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We are now ready to prove Theorem 6'. Using the functional version of Sherman–Morrison–Woodbury

formula, we have }ppΣ
F

y q: ´ Σ:
y}L ď

ř6
k“1 Lk, where

L1 “
›

›ppRAq: ´ Σ:
ε

›

›

L,

L2 “
›

›tppRAq: ´ Σ:
εupQtIr ` pQTppRAq:

pQu:
pQTppRAq:

›

›

L,

L3 “
›

›tppRAq: ´ Σ:
εupQtIr ` pQTppRAq:

pQu:
pQTΣ:

ε

›

›

L,

L4 “
›

›Σ:
εppQ ´ QHTqtIr ` pQTppRAq:

pQu:
pQTΣ:

ε

›

›

L,

L5 “
›

›Σ:
εppQ ´ QHTqtIr ` pQTppRAq:

pQu:HQTΣ:
ε

›

›

L,

L6 “
›

›Σ:
εQHT

“

tIr ` pQTppRAq:
pQu: ´ pIr ` HQTΣ:

εQHTq:
‰

HQTΣ:
ε

›

›

L.

Combining with Lemmas S.8 and S.10, the desired result follows from a similar argument to the proof of

Theorem 6.

S.3 Proofs of theoretical results in Section 4

For the sake of brevity and readability, in this section, we suppose that the orthogonal matrix U in

Theorem 1 and Lemmas B.23–B.28 is an identity matrix, which means that, when we perform eigen-

decomposition on pΩ, we can always select the correct direction of pξj to ensure pξ
T

j
rbj ě 0. The proofs in

Section 3 verify that the choice of U does not affect the theoretical results.

S.3.1 Proposition S.1–S.2 and their proofs

The following two propositions are used in Section 4.1 to quantify the maximum absolute and relative

approximation errors of the functional portfolio variance.

Proposition S.1. Let Σ “ tΣijp¨, ¨qupˆp, and pΣ “ tpΣijp¨, ¨qupˆp with each Σij , pΣij P S. For any fixed

wp¨q P Hp, we have
ˇ

ˇ

ˇ
xw, pΣpwqy ´ xw,Σpwqy

ˇ

ˇ

ˇ
ď }pΣ ´ Σ}S,max

´

ÿ

iPrps

}wi}

¯2
.

Proof. Consider that

xw,Σpwqy “

ż ż

ÿ

iPrps

ÿ

jPrps

wipuqwjpvqΣijpu, vqdudv

ď
ÿ

iPrps

ÿ

jPrps

"
ż ż

Σijpu, vq2dudv

*1{2 "ż ż

wipuq2wjpvq2dudv

*1{2

ď max
iPrps,jPrps

}Σij}S ¨
ÿ

iPrps

ÿ

jPrps

"
ż

wipuq2du

*1{2 "ż

wjpvq2dv

*1{2

“}Σ}S,max ¨
ÿ

iPrps

ÿ

jPrps

}wi}}wj} “ }Σ}S,max

´

ÿ

iPrps

}wi}

¯2
.

Thus,
ˇ

ˇ

ˇ
xw, pΣpwqy ´ xw,Σpwqy

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
xw, ppΣ ´ Σqwqy

ˇ

ˇ

ˇ
ď }pΣ ´ Σ}S,maxp

řp
i“1 }wi}q2.
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Proposition S.2. Suppose Σ and pΣ are Mercer’s kernels and Σ has a bounded inverse. For any fixed

wp¨q P KerpΣqK, we have
ˇ

ˇ

ˇ

ˇ

ˇ

xw, pΣpwqy

xw,Σpwqy
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
›

›pΣ:q1{2
pΣpΣ:q1{2 ´ Ĩp

›

›

L.

Proof. For any given w P KerpΣqK, we denote x “ Σ1{2w P ImpΣq and w “ pΣ:q1{2x, provided that Σ

has a bounded inverse. Consider that

xw,Σpwqy “

ż ż

wpuqTΣpu, vqwpvqdudv “

ż ż

wpuqT
"
ż

Σ1{2pu,wqΣ1{2pw, vqdw

*

wpvqdudv

“

ż
"
ż

wpuqTΣ1{2pu,wqdu

*"
ż

Σ1{2pw, vqwpvqdv

*

dw “

ż

xpwqTxpwqdw “ }x}2

The relative error can be bounded by

ˇ

ˇ

ˇ

ˇ

ˇ

xw, pΣpwqy

xw,Σpwqy
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

xw, pΣpwqy ´ xw,Σpwqy

xw,Σpwqy

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
xx, pΣ:q1{2ppΣ ´ ΣqpΣ:q1{2pxqy

ˇ

ˇ

ˇ

}x}2

ď}pΣ:q1{2
pΣpΣ:q1{2 ´ Ĩp}L,

where the last line follows from Lemma B.14.

S.3.2 Proof of Theorem 7

Since there exist constants c3 and c4 ą 0 such that }Σ:
ε}L ă c3, }Σ:

f }L ă c4, we can obtain that

}Σ:
y}L “ Op1q, and thus for any K P Hp b Hp, }K}2S,Σy

“ Opp´1q}K}2S,F by Lemma A.8(iii).

To prove Theorem 7, we first present some technical lemmas with their proofs.

Lemma S.11. Under the assumptions of Theorem 7, we have }BTΣ:
yB}L “ Op1q.

Proof. By Theorem 3.5.6 of Hsing and Eubank (2015), we obtain that

Σ:
y “ Σ:

ε ´ Σ:
εBpΣ:

f ` BTΣ:
εBq:BTΣ:

ε.

Then it follows that
BTΣ:

yB “BTΣ:
εB ´ BTΣ:

εBpΣ:

f ` BTΣ:
εBq:BTΣ:

εB

“BTΣ:
εBpΣ:

f ` BTΣ:
εBq:Σ:

f

“Σ:

f ´ Σ:

f pΣ:

f ` BTΣ:
εBq:Σ:

f ,

(S.9)

where the last two equalities follow from the assumption KerpΣεq “ KerpBΣfB
Tq. (S.9) also implies that

Σ:

f ľ Σ:

f pΣ:

f `BTΣ:
εBq:Σ:

f since BTΣ:
yB ľ 0. Here, for two Mercer’s kernels K,G P Hr bHr, we denote

K ľ G as the eigenvalues of K ´ G are nonnegative, i.e., K ´ G is still a Mercer’s kernel. Similar to the

monotonicity of matrix spectral norm, it can be shown that the operator norm is monotone, i.e., K ľ G

implies }K}L ě }G}L. Thus, from (S.9) we have

}BTΣ:
yB}L ď }Σ:

f }L ` }Σ:

f pΣ:

f ` BTΣ:
εBq:Σ:

f }L ď 2}Σ:

f }L ď 2c4 “ Op1q,
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where the second inequality follows from the monotonicity of the operator norm.

Lemma S.12. Under the assumptions of Theorem 7, it follows that

(i) }pΣ
A

ε ´ Σε}2S,Σy
“ Oppϖ2´2q

n,p s2pq;

(ii) }ppB ´ BqpΣf ppB ´ BqT}2S,Σy
“ OppM4

εp{n2 ` 1{p3q;

(iii) }BpΣf ppB ´ BqT}2S,Σy
“ OppM2

ε{n ` 1{p2q;

(iv) }BppΣf ´ Σf qBT}2S,Σy
“ OptMε{p

?
npq ` 1{p3{2u.

Proof. (i) Since all the eigenvalues of Σy are bounded away from zero, and by Theorem 4,

}pΣ
A

ε ´ Σε}2S,Σy
— p´1}pΣ

A

ε ´ Σε}2S,F — }pΣ
A

ε ´ Σε}2L “ Oppϖ2´2q
n,p s2pq.

(ii) By applying Lemmas A.8(iii) and B.23, we have

}ppB ´ BqpΣf ppB ´ BqT}2S,Σy
ď p´1}pB ´ B}4F}pΣf }2L}Σ:

y}2L “ OppM4
εp{n2 ` 1{p3q.

(iii) Consider

}BpΣf ppB ´ BqT}2S,Σy
“p´1tr

"
ż

”

pΣf ppB ´ BqTΣ:
yppB ´ BqpΣfB

TΣ:
yB

ı

pu, uqdu

*

ďp´1}BTΣ:
yB}L}Σ:

y}L}pB ´ B}2F}pΣf }2N

“OppM2
ε{n ` 1{p2q,

where the first inequality follows from Lemma A.8(ii) and the last line follows from Lemmas S.11 and

B.23.

(iv) A similar argument shows that

}BppΣf ´ Σf qBT}2S,Σy
“p´1tr

"
ż

”

ppΣf ´ Σf qBTΣ:
yBppΣf ´ Σf qBTΣ:

yB
ı

pu, uqdu

*

ďp´1}BTΣ:
yB}2L}pΣf ´ Σf }L}pΣf ´ Σf }N

“OptMε{p
?
npq ` 1{p3{2u,

where the first inequality follows from Lemma A.8(ii) and the last line follows from Lemmas S.11 and

B.28.

We are now ready to prove Theorem 7. By Lemma S.12,

}pΣ
D

y ´ Σy}2S,Σy
ď2}pΣ

A

ε ´ Σε}2S,Σy
` 2}ppB ´ BqpΣf ppB ´ BqT}2S,Σy

` 4}BpΣf ppB ´ BqT}2S,Σy
` 2}BppΣf ´ Σf qBT}2S,Σy

“Op

ˆ

M4
εp

n2
` ϖ2´2q

n,p s2p

˙

,

which then implies that

}pΣ
D

y ´ Σy}S,Σy “ Op

ˆ

M2
ε
?
p

n
` ϖ1´q

n,p sp

˙

.
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S.4 Proposition S.3 and its proof

The following proposition supporting Section 5 gives the true covariance matrix functions for two

DGPs and the functional sparsity condition.

Proposition S.3. (i) For ytp¨q generated from model (1),

Σypu, vq “ B
␣

50
ÿ

i“1

i´2ϕipuqϕipvqpIr ´ A2q´1
(

BT `

25
ÿ

l“1

3´122´lϕlpuqϕlpvqCζ .

(ii) For ytp¨q generated from model (2),

Σypu, vq “ QpuqpIr ´ A2q´1QpvqT `

25
ÿ

l“1

3´122´lϕlpuqϕlpvqCζ .

(iii) The functional sparsity condition on Σε as specified in (7) satisfies sp À p1´α for α P r0, 1s and

q “ 0.

Proof. (i) Let Ξt “ pξt1, . . . , ξt,50q P Rrˆ50 and ϕp¨q “ t1´1ϕ1p¨q, 2´1ϕ2p¨q, . . . , 50´1ϕ50p¨quT. Note that

Etftp¨qu “ 0 and

Σf pu, vq “ CovtΞtϕpuq,Ξtϕpvqu “

50
ÿ

i“1

i´2ϕipuqϕipvqVarpξtiq,

provided that Covpξti, ξti1q “ 0rˆr for any i ‰ i1. Let Ci “ Varpξtiq and Cu “ Ir be the covariance

matrix of the innovation uti. For weakly stationary VAR(1), it holds that

Ci “Cu ` ACuA
T ` A2CupATq2 ` ¨ ¨ ¨ “

8
ÿ

s“0

AsCupATqs

“

8
ÿ

s“0

pAATqs “

8
ÿ

s“0

A2s “ pIr ´ A2q´1.

Similarly, Σεpu, vq “
ř25

l“1 2
´lϕlpuqϕlpvqVarpψtlq “

ř25
l“1 3

´122´lϕlpuqϕlpvqCζ , provided that Varpψtlq “
ř8

s“0 0.5
2sCζ “ 4Cζ{3. Hence we have

Σypu, vq “ BΣf pu, vqBT ` Σεpu, vq “ B
!

50
ÿ

i“1

i´2ϕipuqϕipvqpIr ´ A2q´1
)

BT `

25
ÿ

l“1

3´122´lϕlpuqϕlpvqCζ .

(ii) The desired result follows immediately from the proof of part (i).

(iii) To see the functional sparsity condition on Σε, notice that

σipuq “ Σε,iipu, uq “

25
ÿ

l“1

3´122´lϕlpuq2D2
i p1 ` δ̃q and }σi}N “

ż

σipuqdu “ c̃D2
i ,
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where c̃ “ 3´1p4 ´ 2´23qp1 ` δ̃q is a constant. Then, for q “ 0 in (7), we have

sp “max
iPrps

p
ÿ

j“1

}σi}
p1´qq{2
N }σj}

p1´qq{2
N }Σε,ij}

q
S “ max

iPrps

p
ÿ

j“1

c̃DiDjIt}Σε,ij}S ‰ 0u

ď
`

c̃max
iPrps

D2
i

˘

max
iPrps

p
ÿ

j“1

IpC0,ij ‰ 0q À max
iPrps

p
ÿ

j“1

IpC̆T
ij ‰ 0q À p1´α.

S.5 Further derivations and definitions

This section contains further derivations and definitions supporting the main context of the paper.

S.5.1 Estimating FFM (1) from a least squares perspective

Similar to Section 2.2, we develop a least squares method to fit model (1) with functional factors. Let

Yp¨q “ ty1p¨q, . . . ,ynp¨qu P Rpˆn, and FpuqT “ tf1p¨q, . . . , fnp¨qu P Rrˆn. Consider solving the least-squares

minimization problem

arg min
B,Fp¨q

ż

}Ypuq ´ BFpuqT}2Fdu “ arg min
B,Fp¨q

n
ÿ

t“1

}yt ´ Bft}
2, (S.10)

subject to the normalization p´1BTB “ Ir. Following the similar procedure in Section 2.2, we obtain

that, for each given B, the constrained least squares estimator rFp¨q “ p´1BTYp¨q. Plugging this into

(S.10), objective function becomes
ş

trrpIp ´ p´1BBTqYpuqYpuqTsdu, whose minimizer is equivalent to

the maximizer of trtBTr
ş

YpuqYpuqTdusBu. Apparently, pB{
?
p are the eigenvectors corresponding to the

r largest eigenvalues of the p ˆ p matrix
ş

YpuqYpuqTdu “ n
ş

pΣ
S

y pu, uqdu.

For the DIGIT method, the loading matrixB is estimated by the eigenanalysis of
ş ş

pΣ
S

y pu, vqpΣ
S

y pu, vqTdudv,

while the above shows that minimizing the least squares criterion (S.10) is equivalent to performing eige-

nanalysis of
ş

pΣ
S

y pu, uqdu. By comparison, the DIGIT method contains more covariance information by

taking into account not only the diagonal entries pΣ
S

y pu, uq but also the off-diagonal entries pΣ
S

y pu, vq for

u ‰ v. Although such increased information may not alter the convergence rate of the proposed estimator,

it will reduce the variance to improve the estimation efficiency.

S.5.2 Relationship between two FFMs

Notice that χtp¨q “ Bftp¨q and κtp¨q “ Qp¨qγt are the common components of the two FFMs (1) and

(2), respectively. The covariance matrix function of χtp¨q is

Σχpu, vq “ BΣf pu, vqBT “ B
!

8
ÿ

i“1

ωiϕipuqϕipvqT
)

BT “

8
ÿ

i“1

pωiψipuqψipvqT, (S.11)

where, by Mercer’s theorem, Σf pu, vq “
ř8

i“1 ωiϕipuqϕipvqT and ψip¨q “ Bϕip¨q{
?
p. Suppose that

Assumption A.1 is satisfied with Σγ “ diagp

p

ϑ1, . . . ,

p

ϑrq. The covariance matrix function of κtp¨q is

Σκpu, vq “ QpuqΣγQpvqT “

r
ÿ

j“1

p

ϑj

p

qjpuq

p

qjpvqT “

r
ÿ

j“1

p

p

ϑjνjpuqνjpvqT, (S.12)
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where t

p

qjp¨qurj“1 is the set of columns of Qp¨q such that t}

p

qj}urj“1 is in a descending order, and νp¨q “
p

qjp¨q{
?
p. Note that

ż

ψipuqTψjpuqdu “

ż

ϕipuqTp´1BTBϕjpuqdu “

ż

ϕipuqTϕjpuqdu “ Ipi “ jq, and
ż

νipuqTνjpuqdu “ p´1

ż

p

qipuqT
p

qjpuqdu “ Ipi “ jq from Assumption A.1.

Consequently, tψip¨qu8
i“1 are the eigenfunctions ofΣχ with nonnegative eigenvalues tpωiu

8
i“1, and tνjp¨qurj“1,

which can be extended to a set of orthonormal basis functions, are the eigenfunctions of Σκ with nonneg-

ative eigenvalues tp

p

ϑju
8
j“1 satisfying

p

ϑj “ 0 when j ą r.

In this point of view, FFM (1) can be converted to FFM (2) if and only if ωi “ 0 when i ą r. On the

contrary, model (2) can be regarded as a special case of model (1) if and only if the solutions of tϕjp¨qurj“1

to the functional equations Bϕjp¨q “

p

qjp¨q for j P rrs exist given B and t

p

qjp¨qurj“1. Since the rank of the

space spanned by columns of matrix B is r, the equivalent condition for the existence of the solutions

follows that the rank of the space spanned by t

p

qjp¨qurj“1 is r.

S.5.3 Sub-Gaussian (functional) linear process

We first define sub-Gaussian functional process.

Definition S.1. Let xtp¨q be a mean zero random variable in H and Σ0 : H Ñ H be a covariance

operator. Then xtp¨q is a sub-Gaussian process if there exists a constant α ě 0 such that for all x P H,

Epexpxx, xtyq ď exptα2xx,Σ0pxqy{2u.

To develop finite-sample theory for relevant estimators in Section 3, we focus on multivariate functional

linear process with sub-Gaussian errors, namely sub-Gaussian functional linear process. Specifically, we

assume ztp¨q “ tzt1p¨q, . . . , ztpp¨quT P Hp admits the representation

ztp¨q “

8
ÿ

l“0

Alpxt´lq, t P Z, (S.13)

where Al “ pAl,ijqpˆp with each Al,ij P S and xtp¨q “ txt1p¨q, . . . , xtpp¨quT P Hp, whose components

are independent sub-Gaussian processes satisfying Definition S.1, and the coefficient functions satisfy
ř8

l“0 }Al}S,8 “ Op1q. In Section 3, we assume that ftp¨q in model (1) and εtp¨q follow sub-Gaussian

functional linear processes, and γt in model (2) follows sub-Gaussian linear process, which can be corre-

spondingly defined from the non-functional versions of (S.13) and Definition S.1.

S.5.4 Optimal functional portfolio allocation

In this section, we derive the optimal functional portfolio allocation pwp¨q that is required in Section 6.

Specifically, we aim to solve the following constrained minimization problem:

pw “ arg min
wPHp

@

w, pΣypwq
D

subject to

ż

U
wpuqT1pdu “ 1.
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To solve this, we apply the method of Lagrange multipliers by defining the Lagrangian function as

Lpw, λq “

ż

U

ż

U
wpuqT pΣypu, vqwpvqdudv ´ 2λ

ż

U
twpuqT1p ´ 1udu,

where λ P R is the Lagrange multiplier. Setting the functional derivative of Lpw, λq with respect to wp¨q

to zero, i.e., 2
ş

U
pΣypu, vqpwpvqdv ´ 2λ ¨ 1p “ 0 for u P U , we obtain that

pwpuq “ λ ¨ pΣ
´1

y p1pqpuq “ λ

ż

U
pΣ

´1

y pu, vq1pdv, u P U .

With the constraint
ş

U pwpuqT1pdu “ 1 and the use of Moore–Penrose inverse, it yields the desired solution

pwpuq “

ş

U
pΣ

:

ypu, vq1pdv
ş

U
ş

U 1T
p
pΣ

:

ypz, vq1pdzdv
, u P U .

S.5.5 Optimal portfolio allocation based on POET

Instead of modeling the CIDR data as p-vector of functional time series, we can treat the data at each

intraday time point uk as p-vector time series, i.e., tytpukqutPrns for k P rKs, where K denotes the number

of intraday time points. For each vector time series, we assume the following factor model:

ytpukq “ Bkfk,t ` εk,t, t P rns, k P rKs.

Then, the standard POET estimator (Fan et al., 2013) can be applied to obtain the estimated covariance

matrix of ytpukq as pΣypuk, ukq.

To incorporate the non-functional method into our functional risk management formulation, we also

need to estimate the cross-covariance matrix Σypuk, ulq “ Covtytpukq,ytpulqu for k ‰ l P rKs. Assuming

that Covpfk,t, εl,tq “ 0 for k, l P rKs, it follows that Σypuk, ulq “ BkCovpfk,t, fl,tqBl `Covpεk,t, εl,tq. Thus,

Σypuk, ulq can be estimated as

pΣypuk, ulq “ pBk

`

n´1
n
ÿ

t“1

pfk.tpf
T
l,t

˘

pBT
l ` n´1

n
ÿ

t“1

pεk.tpε
T

l,t,

where pBk, tpfk,tutPrns and tpεk,tutPrns are obtained by the POET method. With the (cross-)covariance matrix

estimates pΣypuk, ulq for k, l P rKs, the optimal portfolio allocation can be obtained by minimizing the

perceived portfolio risk:

tpwpukqukPrKs “ arg min
twpukqukPrKs

1

K2

K
ÿ

k“1

K
ÿ

l“1

wpukqT pΣypuk, ulqwpulq s.t.
1

K

K
ÿ

k“1

wpukqTIp “ 1. (S.14)

Define the matrix rΣy “
`

pΣypuk, ulq
˘

P RKpˆKp, whose pk, lq-th block is pΣypuk, ulq. Following similar
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derivations as in Section S.5.4, the solution of (S.14) is given by

tpwpu1qT, . . . , pwpuKqTuT “
rΣ

´1

y 1Kp

1T
Kp

rΣ
´1

y 1Kp

P RKp.

S.6 Additional simulation results

This section provides additional results supporting Section 5. Figure S.1 presents boxplots of ∆ICi

(i P r3s) for two DGPs under the setting p “ 100, n “ 50, α “ 0.05, 0.1, and r “ 3, 5, 7. Table S.1 reports

the model selection accuracies for different values of α. The results show that the proposed criteria can

select the correct model with high probability even when α and n are relatively small.

r = 3, α = 0.05 r = 3, α = 0.1 r = 5, α = 0.05 r = 5, α = 0.1 r = 7, α = 0.05 r = 7, α = 0.1

D
G

P
1

D
G

P
2

IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

−1.5

−1.0

−0.5

0.0

0.0

0.4

0.8

criterion

∆I
C

i

Figure S.1: The boxplots of ∆ICi (i P r3s) for DGP1 and DGP2 with p “ 100, n “ 50, α “ 0.05, 0.1 and r “ 3, 5, 7
over 1000 simulation runs.
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Table S.1: The average relative frequency estimates of PtICD
pr̂Dq ă ICF

pr̂Fqu for DGP1, and PtICD
pr̂Dq ă

ICF
pr̂Fqu for DGP2 with p “ 100, n “ 50, 100, α “ 0.05, 0.1, 0.25, 0.5 and r “ 3, 5, 7 over 1000 simulation runs.

r “ 3 r “ 5 r “ 7
α n criterion DGP1 DGP2 DGP1 DGP2 DGP1 DGP2

0.05

50
∆IC1 0.990 0.977 0.984 0.988 0.977 0.998
∆IC2 0.993 0.980 0.992 0.989 0.988 0.998
∆IC3 0.979 0.972 0.976 0.986 0.962 0.997

100
∆IC1 0.994 0.974 0.994 0.992 0.989 0.997
∆IC2 0.998 0.975 0.996 0.993 0.996 0.996
∆IC3 0.993 0.971 0.991 0.992 0.985 0.995

0.10

50
∆IC1 0.992 0.974 0.975 0.993 0.980 0.998
∆IC2 0.998 0.976 0.984 0.996 0.984 0.997
∆IC3 0.988 0.962 0.965 0.991 0.962 0.994

100
∆IC1 0.996 0.974 0.995 0.990 0.995 0.991
∆IC2 1.000 0.974 0.999 0.990 1.000 0.992
∆IC3 0.993 0.971 0.990 0.989 0.988 0.991

0.25

50
∆IC1 0.996 0.983 0.980 0.995 0.973 0.996
∆IC2 0.996 0.985 0.985 0.997 0.984 0.998
∆IC3 0.991 0.982 0.973 0.992 0.959 0.996

100
∆IC1 0.998 0.980 0.993 0.989 0.993 0.994
∆IC2 0.999 0.981 0.999 0.989 0.998 0.994
∆IC3 0.997 0.978 0.991 0.989 0.987 0.992

0.50

50
∆IC1 0.998 0.997 0.995 1.000 0.994 1.000
∆IC2 0.999 0.998 0.996 1.000 0.995 1.000
∆IC3 0.998 0.997 0.993 1.000 0.990 1.000

100
∆IC1 1.000 0.998 0.999 1.000 0.998 1.000
∆IC2 1.000 0.998 1.000 1.000 0.999 1.000
∆IC3 1.000 0.998 0.998 1.000 0.997 1.000

We conduct additional simulations with data generated using p “ 100, n “ 50, α “ 0.5 and r “ 3 for

DGP1 and DGP2. The identified number of factors is set to r̂ “ 1, 3, 5, 7 when calculating ICD
i and ICF

i ,

with the results reported in Figure S.2. It is observed that the proposed criteria exhibit strong robustness

against the misidentification of the number of factors.
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Figure S.2: The boxplots of ∆ICi (i P r3s) for DGP1 and DGP2 with p “ 100, n “ 50, α “ 0.5, r “ 3, and the
number of factors to calculate ICD

i and ICF
i being fixed as r̂ “ 1, 3, 5, 7 over 1000 simulation runs.

The model selection criteria assessed above use the same penalty function when calculating both ICD

and ICF . According to the discussion in Section 2.4, different penalty functions from the perspective of

model complexity can be applied with gDpp, nq “ pp`nsn´kq{pn for ICDpkq and gFpp, nq “ ppsn`n´kq{pn

for ICFpkq. When Mε “ ot
a

logpp ^ nqu and p — n, it can be shown that sn “ log n guarantees that both

gDpp, nq and gFpp, nq satisfy the conditions in Theorem 3. Table S.2 presents the numerical summaries

for the model selection accuracies when different penalty functions are employed. The results show that

the proposed criteria remain effective.

Table S.2: The average relative frequency estimates of PtICD
pr̂Dq ă ICF

pr̂Fqu for DGP1, and PtICD
pr̂Dq ă

ICF
pr̂Fqu for DGP2 with p “ 100, n “ 50, 100, α “ 0.05, 0.1, 0.25, 0.5, r “ 3, 5, 7 and different penalty functions for

ICD and ICF over 1000 simulation runs.

r “ 3 r “ 5 r “ 7
α n DGP1 DGP2 DGP1 DGP2 DGP1 DGP2

0.05
50 0.994 0.945 0.971 0.982 0.961 0.988
100 0.998 0.980 0.991 0.994 0.985 0.998

0.10
50 0.991 0.941 0.979 0.966 0.973 0.990
100 0.991 0.971 0.993 0.986 0.987 0.996

0.25
50 0.995 0.956 0.980 0.987 0.972 0.992
100 0.998 0.979 0.998 0.992 0.989 0.997

0.50
50 0.999 0.996 0.991 0.999 0.993 1.000
100 0.999 1.000 1.000 1.000 0.997 1.000

Then we examine the performance of model selection criteria when there exist moderate to even

strong correlations in idiosyncratic components. Specifically, we generate new idiosyncratic components

rεtp¨q “ cpδ{2εtp¨q for δ P p0, 1q and c “ 2 (or 0.6) for DGP1 (or DGP2) which results in }Σε̃}L “ Oppδq.

The model selection accuracies are presented in Table S.3. The results indicate that the model selection

accuracies decrease (particularly noticeable for DGP2) as δ increases.
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Table S.3: The average relative frequency estimates of PtICD
pr̂Dq ă ICF

pr̂Fqu for DGP1, and PtICD
pr̂Dq ă

ICF
pr̂Fqu for DGP2 with p “ 100, n “ 50, 100, δ “ 0.25, 0.5, α “ 0.5 and r “ 3, 5, 7 over 1000 simulation runs.

r “ 3 r “ 5 r “ 7
δ n criterion DGP1 DGP2 DGP1 DGP2 DGP1 DGP2

0.25

50
∆IC1 0.964 0.997 0.961 1.000 0.941 1.000
∆IC2 0.958 0.997 0.948 1.000 0.938 1.000
∆IC3 0.809 0.997 0.832 1.000 0.827 1.000

100
∆IC1 1.000 1.000 1.000 0.999 1.000 1.000
∆IC2 0.998 1.000 1.000 0.999 1.000 1.000
∆IC3 0.939 1.000 0.962 0.999 0.954 1.000

0.50

50
∆IC1 0.956 0.767 0.925 0.878 0.892 0.920
∆IC2 0.947 0.734 0.910 0.869 0.882 0.921
∆IC3 0.818 0.779 0.776 0.873 0.735 0.916

100
∆IC1 0.999 0.832 0.998 0.935 0.997 0.964
∆IC2 0.992 0.819 0.986 0.925 0.984 0.958
∆IC3 0.947 0.829 0.946 0.917 0.941 0.946

We compare our AFT estimator in (10) with two related methods for estimating the idiosyncratic

covariance Σε, specifically, the sample covariance estimator defined as pΣ
S

ε pu, vq “ n´1
řn

t“1 pεtpuqpεtpvqT,

and Fang et al. (2024)’s AFT estimator in (11). Figures S.3 and S.4 plot average losses of pΣε measured

by functional matrix ℓ1 norm and operator norm for DGP1 and DGP2, respectively, under the settings

n “ p “ 60, 80, . . . , 200 and α “ 0.25, 0.5, 0.75. We observe several evident patterns. First, the estimation

accuracy measured by both functional matrix norms substantially improves when using the AFT esti-

mators compared to pΣ
S

ε . Second, despite our AFT proposal requiring weaker assumptions compared to

Fang et al. (2024)’s method, both AFT estimators exhibit very similar empirical performance. Third,

for α “ 0.25 and 0.5, the performance of the sample and AFT estimators deteriorates as p increases.

However, when α “ 0.75, both losses of two AFT estimators do not show significant upward trends. This

phenomenon can be attributed to the fact that tplog p{nq1{2 ` p´1{2up1´α “ op1q as p, n Ñ 8 if α ą 0.5,

which is implied by Theorems 4 and 4' under the setting n “ p, q “ 0,Mε “ Op1q.
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Figure S.3: The average losses of pΣε in functional matrix ℓ1 norm (top row) and operator norm (bottom row) for
DGP1 over 1000 simulation runs with n “ p “ 60, 80, . . . , 200 and α “ 0.25, 0.5, 0.75.
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Figure S.4: The average losses of pΣε in functional matrix ℓ1 norm (top row) and operator norm (bottom row) for
DGP2 over 1000 simulation runs with n “ p “ 60, 80, . . . , 200 and α “ 0.25, 0.5, 0.75.

Figures S.5 and S.6 plot average losses of pΣy measured by functional versions of elementwise ℓ8 norm,

Frobenius norm and matrix ℓ1 norm for DGP1 and DGP2, respectively, when 9C “ 1.
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Figure S.5: The average losses of pΣy in functional versions of elementwise ℓ8 norm (left column), Frobenius norm

(middle column) and matrix ℓ1 norm (right column) for DGP1 with 9C “ 1 over 1000 simulation runs.
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Figure S.6: The average losses of pΣy in functional versions of elementwise ℓ8 norm (left column), Frobenius norm

(middle column) and matrix ℓ1 norm (right column) for DGP2 with 9C “ 1 over 1000 simulation runs.

S.7 Additional real data result

Table S.4 presents the list of S&P 100 component stocks used in Section 6.
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Table S.4: List of S&P 100 stocks.

Ticker Company Sector Ticker Company Sector

AAPL APPLE INC Information Technology JPM JPMORGAN CHASE & CO Financials

ABBV ABBVIE INC Health Care KHC KRAFT HEINZ Consumer Staples

ABT ABBOTT LABORATORIES Health Care KMI KINDER MORGAN INC Energy

ACN ACCENTURE PLC CLASS A Information Technology KO COCA-COLA Consumer Staples

AGN ALLERGAN Health Care LLY ELI LILLY Health Care

AIG AMERICAN INTERNATIONAL GROUP INC Financials LMT LOCKHEED MARTIN CORP Industrials

ALL ALLSTATE CORP Financials LOW LOWES COMPANIES INC Consumer Discretionary

AMGN AMGEN INC Health Care MA MASTERCARD INC CLASS A Information Technology

AMZN AMAZON COM INC Consumer Discretionary MCD MCDONALDS CORP Consumer Discretionary

AXP AMERICAN EXPRESS Financials MDLZ MONDELEZ INTERNATIONAL INC CLASS A Consumer Staples

BA BOEING Industrials MDT MEDTRONIC PLC Health Care

BAC BANK OF AMERICA CORP Financials MET METLIFE INC Financials

BIIB BIOGEN INC Health Care MMM 3M Industrials

BK BANK OF NEW YORK MELLON CORP Financials MO ALTRIA GROUP INC Consumer Staples

BLK BLACKROCK INC Financials MON MONSANTO Materials

BMY BRISTOL MYERS SQUIBB Health Care MRK MERCK & CO INC Health Care

C CITIGROUP INC Financials MS MORGAN STANLEY Financials

CAT CATERPILLAR INC Industrials MSFT MICROSOFT CORP Information Technology

CELG CELGENE CORP Health Care NEE NEXTERA ENERGY INC Utilities

CHTR CHARTER COMMUNICATIONS INC CLASS A Communication Services NKE NIKE INC CLASS B Consumer Discretionary

CL COLGATE-PALMOLIVE Consumer Staples ORCL ORACLE CORP Information Technology

COF CAPITAL ONE FINANCIAL CORP Financials OXY OCCIDENTAL PETROLEUM CORP Energy

COP CONOCOPHILLIPS Energy PCLN THE PRICELINE GROUP INC Communication Services

COST COSTCO WHOLESALE CORP Consumer Staples PEP PEPSICO INC Consumer Staples

CSCO CISCO SYSTEMS INC Information Technology PFE PFIZER INC Health Care

CVS CVS HEALTH CORP Health Care PG PROCTER & GAMBLE Consumer Staples

CVX CHEVRON CORP Energy PM PHILIP MORRIS INTERNATIONAL INC Consumer Staples

DHR DANAHER CORP Health Care PYPL PAYPAL HOLDINGS INC Information Technology

DIS WALT DISNEY Communication Services QCOM QUALCOMM INC Information Technology

DUK DUKE ENERGY CORP Utilities RTN RAYTHEON Industrials

EMR EMERSON ELECTRIC Industrials SBUX STARBUCKS CORP Consumer Discretionary

EXC EXELON CORP Utilities SLB SCHLUMBERGER NV Energy

F F MOTOR Consumer Discretionary SO SOUTHERN Utilities

FB FACEBOOK CLASS A INC Communication Services SPG SIMON PROPERTY GROUP REIT INC Real Estate

FDX FEDEX CORP Industrials T AT&T INC Communication Services

FOX TWENTY-FIRST CENTURY FOX INC CLASS B Communication Services TGT TARGET CORP Consumer Discretionary

FOXA TWENTY-FIRST CENTURY FOX INC CLASS A Communication Services TWX TIME WARNER INC Communication Services

GD GENERAL DYNAMICS CORP Industrials TXN TEXAS INSTRUMENT INC Information Technology

GE GENERAL ELECTRIC Industrials UNH UNITEDHEALTH GROUP INC Health Care

GILD GILEAD SCIENCES INC Health Care UNP UNION PACIFIC CORP Industrials

GM GENERAL MOTORS Consumer Discretionary UPS UNITED PARCEL SERVICE INC CLASS B Industrials

GOOG ALPHABET INC CLASS C Communication Services USB US BANCORP Financials

GS GOLDMAN SACHS GROUP INC Financials UTX UNITED TECHNOLOGIES CORP Industrials

HAL HALLIBURTON Energy V VISA INC CLASS A Information Technology

HD HOME DEPOT INC Consumer Discretionary VZ VERIZON COMMUNICATIONS INC Communication Services

HON HONEYWELL INTERNATIONAL INC Industrials WBA WALGREEN BOOTS ALLIANCE INC Health Care

IBM INTERNATIONAL BUSINESS MACHINES CO Information Technology WFC WELLS FARGO Financials

INTC INTEL CORPORATION CORP Information Technology WMT WALMART STORES INC Consumer Staples

JNJ JOHNSON & JOHNSON Health Care XOM EXXON MOBIL CORP Energy
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