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Abstract

This paper addresses the fundamental task of estimating covariance matrix functions for high-
dimensional functional data/functional time series. We consider two functional factor structures en-
compassing either functional factors with scalar loadings or scalar factors with functional loadings, and
postulate functional sparsity on the covariance of idiosyncratic errors after taking out the common
unobserved factors. To facilitate estimation, we rely on the spiked matrix model and its functional
generalization, and derive some novel asymptotic identifiability results, based on which we develop
DIGIT and FPOET estimators under two functional factor models, respectively. Both estimators in-
volve performing associated eigenanalysis to estimate the covariance of common components, followed
by adaptive functional thresholding applied to the residual covariance. We also develop functional
information criteria for model selection with theoretical guarantees. The convergence rates of involved
estimated quantities are respectively established for DIGIT and FPOET estimators. Numerical stud-
ies including extensive simulations and a real data application on functional portfolio allocation are
conducted to examine the finite-sample performance of the proposed methodology.
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1 Introduction

With advancements in data collection technology, multivariate functional data/functional time series
are emerging in a wide range of scientific and economic applications. Examples include different types of
brain imaging data in neuroscience, intraday return trajectories for a collection of stocks, age-specific mor-
tality rates across different countries, and daily energy consumption curves from thousands of households,
among others. Such data can be represented as y¢(-) = {y11(-), ..., ysp(-)}" defined on a compact interval
U, with the marginal- and cross-covariance operators induced from the associated kernel functions. These
operators together form the operator-valued covariance matrix, which is also referred to as the following

covariance matrix function for notational simplicity:

Ey = {Ey,jk('v ')}PXP7 Ey,jk(u’v) = Cov{ytj(u)vytk(v)}’ (u,v) € u2a

and we observe stationary yy(-) for t =1,...,n.

The estimation of the covariance matrix function and its inverse is of paramount importance in mul-
tivariate functional data/functional time series analysis. An estimator of ¥, is not only of interest in its
own right but also essential for subsequent analyses, such as dimension reduction and modeling of {y(-)}.
Examples include multivariate functional principal components analysis (MFPCA) (Happ and Greven,
2018), functional risk management, multivariate functional linear regression (Chiou et al., 2016) and func-
tional linear discriminant analysis (Xue et al., 2024). See Section 4 for details of some applications. In
increasingly available high-dimensional settings where the dimension p diverges with, or is larger than, the
number of independent or serially dependent observations n, the sample covariance matrix function iz
performs poorly and some regularization is needed. Fang et al. (2024) pioneered this effort by assuming
approximate functional sparsity in X,, where the Hilbert—Schmidt norms of some X, ji’s are assumed
zero or close to zero. Then they applied adaptive functional thresholding to the entries of f]j to achieve
a consistent estimator of X,.

Such functional sparsity assumption, however, is restrictive or even unrealistic for many datasets,
particularly in finance and economics, where variables often exhibit high correlations. E.g., in the stock
market, the co-movement of intraday return curves (Horvath et al., 2014) is typically influenced by a
small number of common market factors, leading to highly correlated functional variables. To alleviate
the direct imposition of sparsity assumption, we employ the functional factor model (FFM) framework for
y¢(+), which decomposes it into two uncorrelated components, one common x,(-) driven by low-dimensional
latent factors and one idiosyncratic g.(-). We consider two types of FFM. The first type, explored in Guo

et al. (2025), admits the representation with functional factors and scalar loadings:

vi() = x: () +&(0) =BEi(-) +&(r), t=1,...,n, (1)

where f;(+) is a latent stationary r-vector of functional factors, B is a p x r matrix of factor loadings and
e+(+) is a p-vector of idiosyncratic errors. The second type, introduced by Hallin et al. (2023), involves

scalar factors and functional loadings:

yi() = ke() +&() = QU)ve +&l), t=1...,m, (2)



where 4, is a latent stationary r-vector of factors and Q(+) is a p x r matrix of functional factor loadings.
We refer to Xy, 3, ¥, and X. as the covariance matrix functions of f;, x;, k: and &;, respectively.
One may consider a more generalized FFM with functional factors and operator-valued loadings, see (13)
below. However, estimating such a complex structure will introduce elevated errors when estimating the
covariance matrix function. Moreover, by employing a basis expansion approach, the estimation of (13)
can be reduced to that of (2), see Remark 2.5 below. Hence, our paper focuses on FFMs (1) and (2).
Within the FFM framework, our goal is to estimate the covariance matrix function 3, = 3, + 3, for
model (1) (or ¥, = 3, + X, for model (2)). Inspired by Fan et al. (2013), we impose the approximately
functional sparsity assumption on 3. instead of X, directly giving rise to the conditional functional
sparsity structure in models (1) and (2). To effectively separate x,(-) (or k.(:)) from &.(-), we rely on
the spiked matrix model (Fan et al., 2021) and its functional generalization, i.e., a large nonnegative
definite matrix or operator-valued matrix A = L 4+ S, where L is low rank and its nonzero eigenvalues
grow fast as p diverges, whereas all the eigenvalues of S are bounded or grow much slower. The spikeness
pattern ensures that the large signals are concentrated on L, which facilitates our estimation procedure.

Specifically, for model (2), with the decomposition

3y( %) = Q()Cov(v,)Q(*)" + Xe (-, %), (3)
—— ~ ————
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we perform MFPCA based on fJZ, then estimate ¥, using the leading r functional principal components
and finally propose a novel adaptive functional thresholding procedure to estimate the sparse .. This
results in a Functional Principal Orthogonal complEment Thresholding (FPOET) estimator, extending
the POET methodology for large covariance matrix estimation (Fan et al., 2013; Wang et al., 2021) to
the functional domain. Alternatively, for model (1), considering the violation of nonnegative definiteness

in ¥, (u,v) for u # v, we utilize the nonnegative definite doubly integrated Gram covariance:

JJ 3y (u,v)2y(u,v) dudv = B{ JJ 3 f(u,v)B"BX¢(u, U)Tdudv}BT + remaining terms, (4)
. - . ‘Sr

L

>4

which is shown to be identified asymptotically as p — 0. We propose to carry out eigenanalysis of the
sample version of A in (4) combined with least squares to estimate B, f;(-) and hence X,, and then
employ the same thresholding method to estimate 3.. This yields a Doubly Integrated Gram covarlance
and Thresholding (DIGIT) estimator.

The new contribution of this paper can be summarized in five key aspects. First, though our model (1)
shares the same form as the one in Guo et al. (2025) and aligns with the direction of static factor models
in Bai and Ng (2002) and Fan et al. (2013), substantial advances have been made in our methodology and
theory: (i) We allow weak serial correlations in idiosyncratic components &;(-) rather than assuming the
white noise. (ii) Unlike the autocovariance-based method (Guo et al., 2025) for serially dependent data,
we leverage the covariance information to propose a more efficient estimation procedure that encompasses
independent observations as a special case. (iii) More importantly, under the pervasiveness assumption,
we establish novel asymptotic identifiability in (4), where the first » eigenvalues of L grow at rate O(p?),

whereas all the eigenvalues of S diverge at a rate slower than O(p?).



Second, for model (2), we extend the standard asymptotically identified covariance decomposition
in Bai and Ng (2002) to the functional domain, under the functional counterpart of the pervasiveness
assumption. Building upon these findings, we provide mathematical insights when the functional factor
analysis for models (1) and (2) and the proposed eigenanalysis of the respective A’s in (3) and (4) are
approximately the same for high-dimensional functional data. Differing from the least squares method
in Hallin et al. (2023), we develop a novel MFPCA method to estimate model (2) and also establish the
theoretical equivalence of the covariance matrix function estimators based on two methods.

Third, we develop a new adaptive functional thresholding approach to estimate sparse .. Compared
to the competitor in Fang et al. (2024), our approach requires weaker assumptions while achieving similar
finite-sample performance. Fourth, with the aid of such thresholding technique combined with our esti-
mation of FFMs (1) and (2), we propose two factor-guided covariance matrix function estimators, DIGIT
and FPOET, respectively. We derive the associated convergence rates of estimators for ¥., ¥, and its
inverse under various functional matrix norms. Additionally, we introduce fully functional information
criteria to select the more suitable model between FFMs (1) and (2) with theoretical guarantees. Last
but not least, we establish a new functional risk management framework to account for uncertainties in
intraday returns of financial data, where our proposed estimators can be applied.

The rest of the paper is organized as follows. Section 2 presents the corresponding procedures for
estimating 3, under two FFMs and the information criteria used for model selection. Section 3 provides
the asymptotic theory for the estimated quantities. Section 4 discusses a couple of applications of the pro-
posed estimation. We assess the finite-sample performance of our proposal through extensive simulations
in Section 5 and a financial data application in Section 6. Section 7 discusses some future work.

Throughout the paper, for any matrix M = (M;;),x4, we denote its matrices ¢; norm, £, norm, oper-
ator norm, Frobenius norm and elementwise £y, norm by M|y = max; >3, [M;j], [M[e = max; >3, |M;;],
M| = )\rlﬁx(MTM) IMllp = (2 ; M2)1/2 and |M|max = max; j |M;;|, respectively. Let H = Lo(U) be
the Hilbert space of squared integrable functions defined on the compact set &. We denote its p-fold Carte-
sian product by HP = Hx- - - xH and tensor product by S = HQH. For f = (f1,..., f,)".8 = (91,...,9p)" €
HP, we denote the inner product by (f,g) = §,,f(u)"g(u)du with induced norm | - || = ¢, M2, For an
integral matrix operator K : H? — HY induced from the kernel matrix function K = {K;;(-,-)}gxp with
each K;; € S, K(f Su u)du € H? for any given f € HP. For notational economy, we will use K
to denote both the kernel functlon and the operator. We define the functional version of matrix ¢; norm
by |K|s,1 = max; Y, | K;j|s, where, for each K;j € S, we denote its Hilbert-Schmidt norm by [K;;|s =
{{§ Kij(u,v)?dudv}/?. Similarly, we define |K|sq = max; 25 1 Kijls, IKlsr = {2 |K;;|%}? and

|Kij|ls as the functional versions of matrix £y, Frobenius and elementwise ¢, norms,

1K s,max = max;
respectively. We define the operator norm by [K|z = supyems |x|<1 [K(%)| and the trace norm by
IK|n = tr{{ K(u, u)du} for p = ¢. For a positive integer m, write [m] = {1,...,m} and denote by I, the
identity matrix of size m x m. For x,y € R, we use = A y = min(x, y). For two positive sequences {a,} and
{bn}, we write a,, < by, or a, = O(by,) or b, 2 a,, if there exists a positive constant ¢ such that a, /b, < c,

and a,, = o(by,) if a, /b, — 0. We write a,, = b, if and only if a,, < b, and a,, 2 b, hold simultaneously.



2 Methodology

2.1 FFM with functional factors

Suppose that y:(-) admits FFM representation (1), where r common functional factors in fi(-) =
{fa(-),..., fr(:)}" are uncorrelated with the idiosyncratic errors e.(-) = {eu(-),...,etp(-)}" and r is

assumed to be fixed. Then we have
3, (u,v) = BE;(u, )BT + 2. (u,v), (u,v) € U?, (5)

which is not nonnegative definite for some wu,v. To ensure nonnegative definiteness and accumulate co-
variance information as much as possible, we propose to perform an eigenanalysis of doubly integrated
Gram covariance:

Q= ffﬁ)y(u, 0)Ey(u,v) dudv = Qp + Qp, (6)

where Qg = {2, (u,v)2.(u,v)"dudv + { BE;(u, v)BT"E, (u, v)"dudv + § { . (u, v)BE ¢ (u, v) "B dudv
and Qg = B{{ {2 /(u,v)B"BXf(u, v)"dudv}B". To make the loading matrix B asymptotically identifi-

able in the decomposition (6), we impose the following condition.

Assumption 1. p7'B™B =1, and § 3 (u,v)2f(u, v)"dudv = diag(6y, ... ,0,), where there exist some
constants @ > 0 > 0 such that 0 > 6, > 0y > --- > 0, > 4.

Remark 2.1. Model (1) ezhibits an identifiable issue as it remains unchanged if {B, £, (-)} is replaced by
{BU,U~,(-)} for any invertible matriz U. Bai and Ng (2002) assumed two types of normalization for
the scalar factor model: one is p"'B™B = I, and the other is Cou(f;) = I,. We adopt the first type for
model (1) to simplify the calculation of the low rank matriz Qp in (6). However, this constraint alone is
insufficient to identify B, but the space spanned by the columns of B = (by,...,b,). Hence, we introduce
an additional constraint based on the diagonalization of § {3 (u,v)X(u,v)"dudv, which is ensured by
the fact that any nonnegative-definite matriz can be orthogonally diagonalized. Under Assumption 1, we

can express Qg = >, _, pbib;bT, implying that |Qz] = |z |min = p*.
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We now elucidate why performing eigenanalysis of €2 can be employed for functional factor analysis
under model (1). Write B = p 2B = (131, e ,IN)T), which satisfies B'B = I,. Under Assumption 1, it
holds that Qs = p? >, 915153, whose eigenvalue/eigenvector pairs are {(p26;, Bi)}ie[r]' Let \y = --- = ),
be the ordered eigenvalues of 2 and &;,...,&, be the corresponding eigenvectors. We then have the

following proposition.

Proposition 1. Suppose that Assumption 1 and |Qr| = o(p?) hold. Then we have
(i) [X; = p?0;| < [|Qr| for j € [r] and [X;| < |Qr] for j € [pP\[7];
(ii) |€; — bj| = O(p~2|Qx|) for j € [r].

Proposition 1 indicates that we can distinguish the leading eigenvalues {\; }jE[T] from the remaining

eigenvalues, and ensure the approximate equivalence between eigenvectors {Ej }je[r] and the normalized

factor loading columns {lN)J }jepr)» provided that Qg | = o(p®). Towards this, we impose an approximately



functional sparsity condition on X, measured through

p
1—q)/2 1—q)/2
sp = max D [oil oy 1%e51E,  for some g € [0,1), (7)
j=1

where o;(u) = X ;i(u, u) for ue U and i € [p]. Specially, when ¢ = 0 and {|o;||»} are bounded, s, can be
simplified to the exact functional sparsity, i.e., max; >}, I([2c;]s # 0).

Remark 2.2. (i) Our proposed measure of functional sparsity in (7) for non-functional data degenerates
to the measure of sparsity adopted in Cai and Liu (2011). It is worth mentioning that Fang et al. (2024)

introduced o different measure of functional sparsity as
o (02 ()2
5p = max > [oifse oo Sl
i€lpl i
where ||oj]o0 = supy,ey oi(u) = |oi|n- As a result, we will use s, instead of Sp.

(i) With bounded {|o;|n}, we can easily obtain |X.|s;1 = 3|
mas A.6, A.9 in the appendiz and Assumption 1, yields that

S0 = O(sp), which, along with Lem-

1] < |Zcls0lZels1 + 2 (IBEB 5.0 BEfB 5,) " (1251 Be5.00)* = O(s + psp)-

3|

Hence, when s, = o(p), Proposition 1 implies that functional factor analysis under model (1) and eigen-

analysis of £ are approximately the same for high-dimensional functional data.

To estimate model (1), we assume the number of functional factors (i.e., r) is known, and will introduce
a data-driven approach to determine it in Section 2.3. Without loss of generality, we assume that y;(-)
has been centered to have mean zero. The sample covariance matrix function of 3,(-,-) is given by

f]j (u,v) =n"1 Y0 | yi(u)yi(v)™. Performing eigen-decomposition on the sample version of €2,

ﬁ:ffijmmﬁj%mHM@, (8)

leads to estimated eigenvalues ;\1, ey 5\p and their associated eigenvectors El, . ,Ep. Then the estimated
factor loading matrix is B = \/ﬁ(gl, e ,ET) = (IA)l, e ,Br).

To estimate functional factors {f;(-)}[n), we minimize the least squares criterion

n

n
Ylye =B =] f {y:(u) — Bfi(w)} " {y:(u) — Bfi(u)}du (9)
t=1 t=17U
with respect to fi(-),...,£,(-). Setting the functional derivatives to zero, we obtain the least squares esti-
mator E() = p~1BTy,(-) and estimated idiosyncratic errors in &,(-) = (I, —p~'BB")y,(-). Hence, we can
obtain sample covariance matrix functions of estimated common factors and estimated idiosyncratic errors
as f]f(u, v)=n"1Y1, £, (w)f (v)T and S, (u,v) = {igyij(u,v)}pxp =Y n & (u)g(v)", respectively.
Since X, is assumed to be functional sparse, we introduce an adaptive functional thresholding (AFT)

estimator of 3.. To this end, we define the functional variance factors ©;;(u,v) = Var{e(u)es;(v)} for



i,7 € [p], whose estimators are
1 - )
EZ Eti(u — X ij(u, )},

~TA ~ ~
with &4(-) = wi(-) — b, f:() and b; being the i-th row vector of B. We develop an AFT procedure on
ZE using entry-dependent functional thresholds that automatically adapt to the variability of 25 jij S
Specifically, the AFT estimator is defined as E {EE (5 ) pxp with

S = 105715 % 5a (B 1037 5) with A = C(Viogp/n + 1/y/p), (10)

where C' > 0 is a pre-specified constant that can be selected via multifold cross-validation and the order
\/W—F 1//p is related to the convergence rate of S, i/ H@ H 5 under functional elementwise {o, norm.
Here s is a functional thresholding operator with regularization parameter A > 0 (Fang et al., 2024) and
belongs to the class sy : S — S satisfying: (i) ||sx(Z)|s < ¢||Y|s for all Z,Y € S that satisfy |Z —Y|s <

and some ¢ > 0; (i) [sx(Z)]s = 0 for [ Z|s < A; (iii) |sx(Z) — Z| s < A for all Z € S. This class includes
functional versions of commonly-adopted thresholding functions, such as soft thresholding, SCAD (Fan
and Li, 2001), and the adaptive lasso (Zou, 2006).

Remark 2.3. By comparison, Fang et al. (2024) introduced an alternative AFT estimator

S = (B2 pxp with £2,; =01 x S,\< w/@l/z), (11)

which uses a single threshold level to functionally threshold standardized entries f]m-j/@;jp across all (i, 7),

resulting in entry-dependent functional thresholds for f)a jij- dince f] ik requires stronger assumptions (see

Remark 2.2 above and the remark for Assumption 5 below), we adopt the AFT estimator Zajk’ leading
to comparable empirical performance (see Section S.6 of the supplementary material).
Finally, we obtain a DIGIT estimator of X, as
S (u,0) = BS(u,0)BT + 27 (u,0), (u,0) € U2, (12)

2.2 FFM with functional loadings

The structure of FFM is not unique. We could also assume that y;(-) satisfies FFM (2) with scalar
factors and functional loadings Q(-) = {qi(-),...,qp(-)}" with each q;(-) € H", where  common scalar

factors v, = (Y1, ..., )" are uncorrelated with idiosyncratic errors e;(-) and r is assumed to be fixed.

Remark 2.4. (i) While both FFMs assume that different components of y(-) are defined in a common
domain, FFM (2) can be generalized to allow different components to reside in different domains that may
differ in dimensions (e.g., curves and images). However, this generalization is not feasible for FFM (1)
as it involves integrals beyond the inner product used for FFM (2). In almost all real data applications
i the existing literature, the corresponding components all lie in the same domain. Therefore, we focus

on a conceptually special yet practical common case as in FFMs (1) and (2).



(ii) Both (1) and (2) yield useful FFMs but are tailored to tackle rather different situations. A cru-
cial aspect of modeling functional time series is to characterize the functional and dynamic structures.
FFM (1) assumes that both structures are inherited from functional time series factors {f;(-)} with scalar
loadings for enhanced interpretability. In contrast, FFM (2) incorporates dynamic information through

scalar time series factors {~,} while preserving infinite-dimensionality in functional loadings of Q(-).

Remark 2.5. Consider a more generalized FFM (Leng et al., 2024) with functional factors and operator-

valued loadings:

~

yi() = A () + &) = Lf&(-,v)ft(v)dv +ei(), te|n], (13)

where Eg() s a latent stationary r-vector of functional factors and A(, -) is a p X r operator-valued matriz.
For each j € [r], we apply the basis expansion approach to the j-th component of fi(-), fii() = ()T +
ntj (), where @;(-) is a d-vector of basis function, ¥, is a d-vector of basis coefficients, and n;(-) is the
truncation error. Let ®(-) = {1 (), ... ¢, ()} m() = {0 (), -, ()T, Q) = SUA(-,'U)‘I)(U)d’U and
g(-) = Et(-)+SuA(~,v)77t(v)dv. Then, FFM (13) can be rewritten as yi(-) = Q(-);+&(-), which mirrors
the form of FFM (2) with d scalar factors, as the truncation errors are incorporated into the idiosyncratic
components. However, the estimation procedure demands strong technical conditions, and estimating the
covariance matriz function within a more complex structure can lead to increased accumulated errors.
Hence, our paper focuses on FFM (2) instead of FFM (13).

Under FFM (2), we have the covariance decomposition
2, (u,v) = Qu)E, Q)" + Ze(u,v), (u,v) € U>. (14)

By the multivariate version of Mercer’s theorem, which serves as the foundation of MFPCA (Chiou et al.,
2014; Happ and Greven, 2018), there exists an orthonormal basis consisting of eigenfunctions {¢;(-)}7

of ¥, and the associated eigenvalues 71 = 7 > --- > 0 such that

Ey(uﬂ}) = Z Ti‘Pi(u)‘Pi(U)T7 (u,v) € u2’ (15)
=1

where the sum converges absolutely and uniformly in both « and v.
We now provide mathematical insights into why MFPCA can be applied for functional factor analysis
under model (2). To ensure the identifiability of the decomposition in (14), we impose a normalization-

type condition similar to Assumption 1.

Assumption 1'. ¥, = I, and p~! { Q(u)*Q(u)du = diag(d1,...,9,), where there exist some constants
9> 9 >0 such that ¥ > 91 > 99 > --- > 1, > U.

Suppose Assumption 1' holds, and let q;(-),...,d,(-) be the normalized columns of Q(:) such that
Iq;ll = 1 for j € [r]. By Lemma A.11 in the appendix, {q;(-)} e[, are the orthonormal eigenfunctions of
the kernel function Q(-)Q(-)" with corresponding eigenvalues {pd;}7_; and the rest 0. We then give the

following proposition.



Proposition 2. Suppose that Assumption 1' and |E. |z = o(p) hold. Then we have
(i) |7y = pUj| < [Zclc for j € [r] and |7j| < |Zclc for j € [pN\r];
(it) l¢; — @il = O~ Zcl ) for j e [r].

Proposition 2 implies that, if we can prove |[X:|z = o(p), then we can distinguish the principal
eigenvalues {7;}e[,] from the remaining eigenvalues. Additionally, the first r eigenfunctions {¢;(-)} ;e[
are approximately the same as the normalized columns of {q;(-)};e[,). To establish this, we impose the

same functional sparsity condition on 3. as measured by s, in (7). Applying Lemma A.7(iii) in the
1/2 1/2

= O(sp). Hence, when s, = o(p), MFPCA is approximately

ells o

appendix, we have |2/, < |2
equivalent to functional factor analysm under model (2) for high-dimensional functional data.

We now present the estimation procedure assuming that 7 is known, and we will develop a ratio-based
approach to identify 7 in Section 2.3. Let 71 = 79 = --- = 0 be the eigenvalues of the sample covariance

Zy and {cpj(-)};)»ozl be their corresponding eigenfunctions. Then f]; has the spectral decomposition
r A~
v) = D758 (W@;(0)" + R(u,v),
j=1

where f{(u v) = Z;O 1 TP (u )ga]( v)" is the functional principal orthogonal complement. Applying
AFT as introduced in Section 2.1 to R yields the estimator RA. We finally obtain a FPOET estimator as

uvzzw %:(v)" + R*(u, v). (16)

It is noteworthy that, with 3, satisfying decompositions (5) and (14) under FFMs (1) and (2),
respectively, both DIGIT and FPOET methods embrace the fundamental concept of a “low-rank plus
sparse” representation generalized to the functional setting. Consequently, the common estimation steps
involve applying PCA or MFPCA to estimate the factor loadings, and applying AFT to estimate sparse X..
Essentially, these two methods are closely related, allowing the proposed estimators to exhibit empirical
robustness even in cases of model misspecification (See details in Section 5). See also Section S.5.2 of the
supplementary material for a discussion about the relationship between two FFMs.

We next present an equivalent representation of FPOET estimator (16) from a least squares perspec-

tive. We consider solving a constraint least squares minimization problem:

n

QOB = ang i, [ 1Y (0) ~ QUT™ fpdu = arg | min 3" Iys = Q% (a7)

) Y15 t=1

subject to the normalization constraint corresponding to Assumption 1', i.e.,

— Z vv¢ =1, and — JQ )"Q(u)du is diagonal,

i3
where Y(-) = {yi(:),...,yn(-)} and T'" = (v4,...,7,). Given each T, setting the derivative of the
objective in (17) w.r.t. Q(-) to zero, we obtain the constrained least squares estimator Q(-) = n~ Y'Y (-)T.
Plugging it into (17), the objective as a function of ' becomes { |Y (u) —n 'Y (u)I'T(v)" |Edu = § tr{(L,—



n~ITT")Y (u)"Y (u) }du, whose minimizer is equivalent to the maximizer of tr[T'"{ § Y (u)"Y (u)du}T].
This implies that the columns of n~Y 2T are the eigenvectors corresponding to the r largest eigenvalues
of §Y (u)"Y (u)du € R™", and then Q(-) = n~ 'Y ().

Let &(-) = y:(-) — Q(-)3, and 2. (u,v) = n~! D1 &t(u)gr(v)". Applying our proposed AFT in (10)
to ENJE yields the estimator f]? Analogous to the decomposition (14) under Assumption 1', we propose

the following substitution estimator

~L ~

S (u,0) = Qu)Q(0)" + =2 (u,0). (18)

The following proposition reveals the equivalence between the FPOET estimator (16) and the con-
strained least squares estimator (18).

Proposition 3. Suppose the same regularization parameters are used when applying AFT to R and ig.
>~ A

Then we have f]; = f]; and R* = 37

Remark 2.6. (i) While our FFM (2) shares the same form as the model studied in Hallin et al. (2023);
Tavakoli et al. (2023), which focused on the estimation of scalar factors and functional loadings from a
least squares viewpoint, the main purpose of this paper lies in the estimation of large covariance matriz
function. Consequently, we also propose a least-squares-based estimator of X, which turns out to be
equivalent to our FPOET estimator by Proposition 3.

(1t) Using a similar procedure, we can also develop an alternative estimator for 3, under FFM (1) from
a least squares perspective. However, this estimator is distinct from the DIGIT estimator (12) and leads

to declined estimation efficiency. See detailed discussion in Section S.5.1 of the supplementary material.

2.3 Determining the number of factors

We have developed the estimation procedures for FFMs (1) and (2), assuming the known number of
functional or scalar factors (i.e., r). In this section, we take the frequently-used ratio-based approach
(Lam and Yao, 2012; Ahn and Horenstein, 2013) to determine the value of 7.

For model (1), we let M= 5\p be the ordered eigenvalues of Qin (8), and propose to estimate r
by

Aj Y
7P = arg min #174_1”, (19)
jelriol Aj + Y1p
where 91, provides a lower bound correction to ;\j for j > r (Han et al., 2022) and satisfies Assumption 7

below, and r1 o > r is sufficiently large. For model (2), we employ a similar eigenvalue-ratio estimator:

oy . Tjr1 + U2,
roo=arg mm —f(/—/————

- ) 20
jE[Tg,O] Tj + 19271 ( )

where 12,, provides a lower bound correction to 7; for j > r and satisfies Assumption 7' below, {7;}72,
~S

represents the ordered eigenvalues of the sample covariance Ey(-, -), and rg o > r is sufficiently large. We

set ¥, = cran_‘l/ 5 and ¥y, = crpn_4/ 5 for some ¢, > 0 so that Assumptions 7 and 7' are satisfied. In

our empirical analysis, we choose ¢, = 0.1, which consistently yields good finite-sample performance.
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2.4 Model selection criterion

A natural question that arises is which of the two candidate FFMs is more appropriate for modeling
v¢(+). This section develops functional information criteria based on observed data for model selection.
When k functional factors are estimated under FFM (1), motivated from the least squares criterion

(9), we define the mean squared residuals as

n
VP(k) = (pn) "' ). lye — p~ ' BiBiye|?,
t=1

where ﬁk is the estimated factor loading matrix by DIGIT. Analogously, when k scalar factors are
estimated under FFM (2), it follows from the objective function in (17) that the corresponding mean

squared residuals is

n
V7 (k) = (pn)! Z ly: — n_lYFkﬁt,k”2,
=1

where f‘z = (Y14 -+ »Yn) is formed by estimated factors using FPOET.

For any given k, we propose the following information criteria:
IC?(k) = log{V"(k)} + kg”(p,n) and IC7(k) = log{V”(k)} + kg” (p,n), (21)

where IC” (k) and IC” (k) are represented as the sum of the log transformation of the average of squared
residuals and the penalty term with ¢”(p,n) and ¢g”(p,n) being the corresponding penalty functions of
(p,m) to avoid overparameterization. While there is much existing literature (see e.g., Bai and Ng, 2002;
Fan et al., 2013) that has adopted this type of criterion for identifying the number of factors in scalar
factor models, we propose fully functional criteria for selecting the more appropriate FFM. Following Bai
and Ng (2002), we suggest three examples of the same penalty functions g”(p,n) = ¢” (p,n) = g(p,n) in
(21), referred to as ICy, ICq, and ICs, respectively,

(@) g(pm) = " 1og (ppfn) (i) lp.m) = T dog(p ), (i) g(p) = ELET)
For model selection, we define the information criterion difference between two FFMs as AIC; = IC? (#7)—
IC] (#7) for i = 1,2, 3. The negative (or positive) values of AIC;’s indicate that FFM (1) (or FFM (2))
is more suitable based on the observed data {y:(-)}. See the model selection consistency guarantee in
Theorem 3 under mild requirements on penalty functions, which three examples of g(p, n) satisfy.

In general, instead of using the same penalty functions in IC” and IC”, we can employ different penalty
functions that satisfy the requirements of Theorem 3 from a model complexity perspective. Specifically,
considering the panel nature of the problem with an effective number of observations pn and assuming
each function has a complexity of s,,, the effective total number of parameters for each model is calculated
as the total number of parameters minus the number of constraints in Assumption 1 or 1', which yields
kp+kns, —k? for FFM (1) and kps,, + kn—k? for FFM (2). Therefore, the feasible options for the penalty
functions are ¢ (p,n) = (p+ns,—k)/pn and g7 (p,n) = (ps, +n—k)/pn. However, rigorously determining

s remains an open question. Theoretically, by imposing specific requirements on s,,, Theorem 3 can ensure
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the model selection consistency of IC” and IC”. In practice, one can select the leading s,, eigenvalues of
the corresponding covariance functions such that the cumulative percentage exceeds a certain threshold

or adopt the eigenvalue-ratio-based method.

3 Theory

3.1 Assumptions

The assumptions for models (1) and (2) exhibit a close one-to-one correspondence. For clarity, we will

present them separately in a pairwise fashion.

Assumption 2. For model (1), {f;(-)}+=1 and {&(-)}i=1 are weakly stationary and E{e;(u)} = E{ey(u) fij(v)} =
0 for all i€ [p], j € [r], and (u,v) € U>.

Assumption 2'. For model (2), {v;}i=1 and {€:(-)}¢=1 are weakly stationary and E{ey;(u)} = E{ey(u)yy} =
0 for allie [p], j€[r], and uel.

Assumption 3. For model (1), there exists some constant C > 0 such that, for all j € [r], t € [n], (i)
[bjlmax < C; () Elp~"*Be|* < C; (iii) | Sellc < C; (iv) maxiepy) | Seiiln < C.

Assumption 3'. For model (2), there exists some constant C' > 0 such that, for alli € [p], t,t' € [n]: (i)
lail < € (i) Elp~"? § Q(u)"er(w)dul* < C'and Elp~"*{{er, ) — Eder, e} < C; (idi) |Ze]c < C
(i?)) Inaxl-e[p] HES,WHN < C,.

Assumption 3(i) or 3'(i) requires the functional or scalar factors to be pervasive in the sense they
influence a large fraction of the functional outcomes. Such pervasiveness-type assumption is commonly
imposed in the literature (Bai, 2003; Fan et al., 2013). Assumptions 3(ii) and 3'(ii) involve weaker moment
constraints compared to Fan et al. (2013) and are needed to estimate factors and loadings consistently.
Assumption 3(iii) and 3'(iii) generalize the standard conditions for scalar factor models (Fan et al., 2013;
Wang et al., 2021) to the functional domain. Assumptions 3(iv) and 3'(iv) are for technical convenience.
However we can relax them by allowing max; |2, ;[ o to grow at some slow rate as p increases.

We use the functional stability measure (Chang et al., 2024) to characterize the serial dependence.
For {y.(-)}, denote its autocovariance matrix functions by Eéh)(u, v) = Cov{y(u),yt+n(v)} for h € Z
and (u,v) € U? and its spectral density matrix function at frequency 6 € [—m, 7| by f,(u,v) =
2m) 1> E@Sh) (u,v) exp(—ihf). The functional stability measure of {y;(-)} is defined as

o D(e)
My =2me S0 (6.5, (22)

where 3 = §,/ 2y ¢(v)dv and HY) = {¢p € HP : (¢, X, (¢)) € (0,00)}. When yi(-),...,yn(:) are
independent, My = 1. See also Guo and Qiao (2023) for examples satisfying M, < oo, such as functional
moving average model and functional linear process. Similarly, we can define M. of {&;(-)}, My of {f;(-)}
and M, of scalar time series {-,} (Basu and Michailidis, 2015). To derive exponential-type tails used in
convergence analysis, we assume the sub-Gaussianities for functional (or scalar) factors and idiosyncratic
components. We relegate the definitions of sub-Gaussian (functional) process and multivariate (functional)

linear process to Section S.5.3 of the supplementary material.
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Assumption 4. For model (1), (i) {f(-) }iepn) and {€:(-) }ie[n) follow sub-Gaussian functional linear pro-
cesses; (ii) My < 00, M. < 00 and M2 logp = o(n).

Assumption 4'. For model (2), (i) {7;}ie[n] follows sub-Gaussian linear process and {&(-)}e[n) follows

sub-Gaussian functional linear process; (i) M~ < 0, M. < o0 and M?logp = o(n).
Assumption 5. There exists some constant T > 0 such that min; jep) |Var(eves)|s = 7.
Assumption 6. The pair (n,p) satisfies M2logp = o(n/logn) and logn = o(p).

Assumption 7. ¥1,p 2 — 0,91, M 2p~2n — 0 and 91, — 00, where V1, is specified in (19).
Assumption 7'. ¥o,p! — 0,92, M-2p~In — 00 and ¥2,p — 0, where Vo, is specified in (20).

Assumption 8. For model (1), (i) there exists some constant w > 0 such that wy = wy = -+ = Wry o411 =

w, where {w;}2 are the ordered eigenvalues of Xy (-,-) and ra is given in (20); (ii) | B |n = o(p).

Assumption 8'. For model (2), (i) rank{ § Q(u)Q(u)"du} = r19 + 1, where r1 is given in (19); (ii)
|Ze|n = o(p).

Assumption 5 is required when implementing AFT, however, it is weaker than the similar assumption
inf (, v)er2 NG jepp) Var[er(u)er;(v)] = 7 imposed in Fang et al. (2024). Assumption 6 allows the high-
dimensional case, where p grows exponentially as n increases. Assumptions 7 and 7' on the lower bound
correlations (i.e., ¥, and ¥,) are imposed to ensure the consistency of ratio-based estimators for the
number of factors. Both assumptions are satisfied by setting ¥, = p?n~" and ¥, = pn~" when M, =
O(1) and n? = o(p?) for p € (0,1). Assumptions 8 and 8' are needed when establishing the model selection
consistency for the proposed information criteria. For model (1), Assumption 8(i) implies that the common
covariance 3, (-,-) = BX¢(-,-)B" has at least 0 + 1 nonzero eigenvalues of order p, which cannot be
recovered by the FPOET estimator with #7 < 7y factors. Similarly, for model (2), Assumption 8'(i)
implies that {3, (u,v)E.(u,v)"dudv = § Q(u)Q(u)"du (which holds under Assumption 1') has at least
71,0 + 1 nonzero eigenvalues of order p?, which cannot be recovered by the DIGIT estimator with #? < rq
factors. To guarantee the asymptotic identifiability of the respective FFMs for model selection, we require
Assumptions 8(ii) and 8'(ii) to hold for {e:(-)}.

3.2 Convergence of estimated loadings and factors

While the main focus of this paper is to estimate X, the estimation of factors and loadings remains
a crucial aspect, encompassed by DIGIT and FPOET estimators, as well as in many other applications.
We first present various convergence rates of estimated factors and loading matrix when implementing
DIGIT. For the sake of simplicity, we denote

wWnp = Mcr/logp/n +1/4/p.

Theorem 1. Suppose that Assumptions 1—4 hold. Then there exists an orthogonal matriz U € R™" such
that (i) |B=BU" |max = Op (wnp); (@) n~ ' 25 [f—UL[? = Op(MZ/n+1/p); (iti) maxep) £ — U] =
Op(Mcr/logn/n + +/log n/p).
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The orthogonal matrix U above is needed to ensure that b]T-Bj > 0 for each j € [r]. Provided that
ﬁUUTE = ﬁ?t, the estimation of the common components and ¥, remain unaffected by the choice of
U. By Theorem 1, we can derive the following corollary, which provides the uniform convergence rate of

the estimated common component. Let b; and b; denote the i-th rows of B and ]§, respectively.

Corollary 1. Under the assumptions of Theorem 1, we have maXe(p) e[n] HIVJZTE: —bIfy| = O,(0), where
0 = Mc/lognlogp/n + +/logn/p.

In the context of FPOET estimation of factors and loadings, we require an additional asymptotically
orthogonal matrix H such that 4, is a valid estimator of H~,. Differing from DIGIT, we follow Bai (2003)
to construct H in a deterministic form. Let V € R"™*" denote the diagonal matrix of the first r largest
eigenvalues of f]j in a decreasing order. Define H = n‘lV_lf‘TI‘SQ(u)TQ(u)du. By Lemma S.6 of the
supplementary material, H is asymptotically orthogonal such that I, = H"H + 0,(1) = HH™ + 0,(1).

Theorem 1'. Suppose that Assumptions 1'—4" hold. (i) n™* > | |7, — Hy,|> = Op(M2/n + 1/p); (ii)
maxiey) [5; — Hy,| = Op(Me/v/n + +/logn/p); (iti) maxicy) |G — Hay|| = Op(w@n,p).

Corollary 1'. Under the assumptions of Theorem 1', we have maX;e(p) se(n] 17 ¥+ — i V¢l = Op(0), where

o0 is specified in Corollary 1.

When M. = O(1), the convergence rates presented in Theorem 1(i), (ii) for model (1) are, respectively,
consistent to those established in Fan et al. (2013) and Bai and Ng (2002), and the uniform convergence
rates presented in Theorem 1(iii) and Corollary 1 are faster than those established in Fan et al. (2013).
Additionally, the rates in Theorem 1' and Corollary 1' for model (2) align with those in Theorem 1 and
Corollary 1. These uniform convergence rates are essential not only for estimating the FFMs but also for

many subsequent high-dimensional learning tasks.

Theorem 2. (i) Under Assumptions 1-4 and 7, P(t? = r) — 1 as p,n — o, where 77 is defined in (19).
(i) Under Assumptions 1'-/" and 7', P(+" =r) — 1 as p,n — oo, where 7 is defined in (20).

Theorem 3. Suppose that g(p,n) — 0 and (M?2/n+1/p)~Lg(p,n) — o asp,n — o for both penalty func-
tions g°(p,n) and g”(p,n) in (21). Then, (i) under Assumptions 14, 7 and 8, P{IC?(#?) < IC(#7)} —
1 as p,n — o0; (ii) under Assumptions 1'-4', 7' and 8', P{ICP(f?) > IC*(#")} — 1 as p,n — .

Remark 3.1. With the aid of Theorems 2 and 3, our estimators explored in Sections 3.2 and 3.3 are
asymptotically adaptive to the number of factors and the data-generating model. To see this, consider, e.q.,
model (2), and let Ky 7(-) be the estimated common component, and 7, ; and q; (-) be constructed using 7>
estimated scalar factors and functional loadings. Then, for any constant ¢ > 0, P(g_l MaXie(p] te[n] |Rti s —
kil > €) < P{o™! maxiepy) tepn) [AF Y —afvell > €77 = r, ICP(7P) > IC7(#7) } +P(77 # r) +P{ICP(#?) <
IC*(77)}, which, combined with Corollary 1', implies that maxiepy) tefn) |Reie — kil = Op(o). Similar
arguments can be applied to other estimated quantities in Sections 3.2 and 3.3. Therefore, we assume that

the number of factors and data-generating model are known in our asymptotic results.

3.3 Convergence of estimated covariance matrix functions

Estimating the idiosyncratic covariance matrix function 3. is important in factor modeling and sub-

sequent learning tasks. With the help of functional sparsity as specified in (7), we can obtain consistent
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estimators of 3. under functional matrix ¢; norm | - ||s; in the high-dimensional scenario. The following
rates of convergence based on estimated idiosyncratic components are consistent with the rate based on

direct observations of independent functional data (Fang et al., 2024) when M. = O(1) and plogp = n.

Theorem 4. Suppose that Assumptions 1-6 hold. Then, for a sufficiently large constant C in (10),
132 = Xelsp = Op(@nyp sp)-

Theorem 4'. Suppose that Assumptions 1'-4', 5, 6 hold. Then, for a sufficiently large constant C in
(10), [RA - Op(wrlﬁoqsp)-

When assessing the convergence criteria for our DIGIT and FPOET estimators, it is crucial to note
that functional matrix norms such as | - [s1 and | - ||z are not suitable choices. This is because iy
may not converge to X, in these norms for high-dimensional functional data, unless specific structural
assumptions are directly imposed on X,. This issue does not arise from the poor performance of estimation
methods but rather from the inherent limitation of high-dimensional models. To address this, we present

convergence rates in functional elementwise £y, norm | - | s max-

Theorem 5. Under the assumptions of Theorem 4, we have Hi; -X = Op(@n,p)-

Theorem 5'. Under the assumptions of Theorem J', we have Hf); — 2y)5,max = Op(@np)-

Remark 3.2. (i) The convergence rates of DIGIT and FPOET estimators (we use ﬁy to denote both)
comprise two terms. The first term Op(M \/m arises from the rate of s y» While the second term
Op(p 1/2) primarily stems from the estimation of unobservable factors. When ./\/lE = O(1), our rate aligns
with the result obtaz'ned in Fan et al. (2013).

(i) Compared to 50 y» we observe that using a factor-guided approach results in the same rate in || - | s max
as long as plogp = n. Nevertheless, our proposed estimators offer several advantages. First, under a
functional wezghted quadratic norm introduced in Section 4.1, which is closely related to functwnal risk
management, Ey converges to 3, in the high-dimensional case (see Theorem 7), while E does not
achieve this convergence. Second, as evidenced by empirical results in Sections 5 and 6, Zy szgmﬁcantly

SS . . . .
outperforms X, in terms of various functional matriz losses.

Finally, we explore convergence properties of the inverse covariance matrix function estimation. Based
on Section 3.5 of Hsing and Eubank (2015), although the inverse operator X, ! may not be well-defined,
we instead use the Moore-Penrose inverse. Denote the null space of 3, and its orthogonal complement by
Ker(X2,) = {x e HP : 3,(x) = 0} and Ker(Ey)l ={xelP:(x,y) =0,Vy e Ker(X,)}, respectively. Let
i]y be the restriction of X, to Ker(X,)*. By Definition 3.5.7 of Hsing and Eubank (2015), the Moore—
Penrose inverse of 3, is defined as EL(X) = iy_l(x) for x € Im(X,) and 0 for x € Im(X,)+. The similar
definition applies to the Moore—Penrose inverses of other covariance matrix operators. To obtain the
inverse DIGIT estimator, we assume Ker(X.) = Ker(BX;B"), which implies that Ker(X%.) = Ker(3,),
and fly, 3. and BY BT are all invertible on Ker(X,)*. We then rely on (5) to apply Sherman—Morrison—

Woodbury formula (Theorem 3.5.6 of Hsing and Eubank (2015)) to obtain its inverse EL =xl-xiB (2}4—

B™:!B)'BTS], and the plug-in inverse DIGIT estimator is ()" = ! — S/B(S} + B*S!B)'Brs].
The plug-in inverse FPOET estimator (f);)T can be defined similarly by assuming that Ker(X.) =

Ker(QX,Q"). To make (f];) )T and (f);)T meaningful inverse covariance matrix estimators, we focus on
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finite-dimensional functional objects {y:(-)}se[n], i-€-, HE;H ¢ is bounded. Then, both the inverse DIGIT

and FPOET estimators are consistent in the operator norm, as presented in the following theorems.

Theorem 6. Suppose that the assumptions of Theorem 5 hold, w}qusp = 0(1), Ker(3;) = Ker(BX/B"),
and both | =]z and ||2 Hg are bounded. Then, E has a bounded Moore—Penrose inverse with probability

approaching one, and H T —>f HE = Op( wn,p sp).

Theorem 6'. Suppose that the assumptions of Theorem 5' hold, w}bg,qsp =0(1), Ker(X;) = Ker(QX,Q"),
and HETHL is bounded. Then, f)f has a bounded Moore—Penrose inverse with probability approaching one,
and | (% T—ZTHL—O(wnpsp)

Remark 3.3. (i) The condition that |2l and HZ |z are bounded implies that HZT |z is bounded,
which means that 3, has a finite number of nonzero eigenvalues, denoted as d < oo. Then Xy (u,v) =
S T (u)ep; (v) with its inverse ZL(U, v) =%, 77 e (u) e (v)T. While the inverse of iz fails to ex-
hibit convergence even though it operates within finite-dimensional Hilbert space, our factor-guided methods
can achieve such convergence. It should be noted that d can be made arbitrarily large relative to n, e.g.,
d = 2000,n = 200. Hence, this finite-dimensional assumption does not place a practical constraint on our
method. See applications of inverse covariance matriz function estimation in Sections 4.1 and 4.2.

(1t) An example that satisfies Ker(3.) = Ker(BXB™") is 3. (u,v) = Z?zl Ajpi(u);(v)" and By (u,v) =
Z;l:l wj@;(u)e;(v)T, where \j > 0 and w; > 0 for j € [d] and span{;(-)}je[q) = span{Be;(-)} je(q)- While
the existing literature has not explored the convergence properties of high-dimensional inverse covariance
operators, our papers makes a first attempt within the functional factor modeling framework by assuming
the finite-dimensional functional objects and the same spaces spanned by the corresponding eigenfunctions.
We leave the possible relaxation of these conditions as future research.

(iii) Within infinite-dimensional Hilbert space, the inverse operator E;(u,v) =32 7 s (w) (V)T be-
comes an unbounded operator, which is discontinuous and cannot be estimated in a meaningful way.
However, EL is usually associated with another function/operator, and the composite function/operator
in Ker(X,)* can reasonably be assumed to be bounded, such as regression function/operator and discrim-
inant direction function in Section 4.2. Specifically, consider the spectral decomposition (15), which is
truncated at d < oo, i.e., 3y 4(u,v) = Z‘Ll Tip;(w)p;(v)T. Under certain smoothness conditions, such as
those on coefficient functions in multivariate functional linear regression (Chiou et al., 2016), the im-
pact of truncation errors through ¥, ;. 7 Yo, (u)p;(v)T on associated functions/operators is expected to
diminish, ensuring the boundedness of composite functions/operators. Consequently, the primary focus

shifts towards estimating the inverse of X, 4, and our results in Theorems 6 and 6' become applicable.

Upon observation, a remarkable consistency is evident between DIGIT and FPOET methods developed
under different models in terms of imposed regularity assumptions and associated convergence rates,

despite the substantially different proof techniques employed.

4 Applications

4.1 Functional risk management

One main task of risk management in the stock market is to estimate the portfolio variance, which
can be extended to the functional setting to account for the intraday uncertainties. Consider a port-
folio consisting of p stocks. Let P¢(-) = {Pu(:),..., Pp(:)}", Ze(-) = {Zu1(:), ..., Zip(-)}" and Wy(-) =
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{We1 (), ..., Wp(-)}", where Pyy(u), Zyi(u) and wy(u) = Zii(u)Py(u) respectively denote the price per-
share, the quantity held, and the amount of money held for the i-th stock at time w on the t-th trading
day. We assume that ¢ = [0, 1] and w;(0)"1, = 1, where 1, = (1,...,1)" € RP, meaning that the initial
portfolio amount is normalized to facilitate subsequent analysis. Then, the functional portfolio return of
the t-th day is

1

(Z:, VP = | Wi(u)"V{log Pi(u)}du = Wi (u)" log{P¢(u)} ‘(1) — (Vwy,log(Py))

25—

1) ye(1) = VWi, 1), (23)

where y;(u) = log{P¢(u)} — log{P:(0)},u € [0,1] turns to be the cumulative intraday return (CIDR)
trajectory as defined in Horvath et al. (2014). As discussed in Lou et al. (2019), the close-to-close return
of the stock can be decomposed into overnight and intraday components, and the profits of popular trading
strategies are either earned entirely overnight or entirely intraday. Since the CIDR trajectories are only
recorded during the trading period, our functional risk management focuses on the intraday strategy, where
assets are bought and sold within the same day to profit from short-term price movements, so we close out
all positions by the end of the trading day with w;(1) = 0. By (23), the functional portfolio return of the
t-th day is r = (wy,y) with wi(-) = —=VwW(+). If wy(u) = =V (u) > 0 (or < 0), it indicates that an
amount wy; (u) of the i-th stock is sold (or bought) at time u. The amount held in each stock at the opening
is determined by w(0) = S(l) w(u)du. The constraint on wy(-) is S(l) wi(u)"1,du = Wi (0)T1,—w (1)1, = 1,
and hence wy(-) can be viewed as the functional portfolio allocation vector. Despite being formulated
within a functional framework, the practical implementation can be achieved through discretization, such
as at intervals of every 5 or 10 minutes. The functional portfolio variance of the ¢-th day is calculated as
Var(r) = (wy, Xy(wy)). For a more general w;(1), the corresponding functional portfolio variance involves
the cross-covariance between two terms in (23), which largely complicates functional risk management
and is left for future research.

For a given w(-), the true and perceived variances (i.e., risks) of the functional portfolio are (w, X, (w))
and (w, f]y (w)), respectively. According to Proposition S.1 of the supplementary material, the estimation

error of the functional portfolio variance is bounded by

p
Samax (Y Jwil),

=1

(w, By (w)) — (w, By (w))| < |Z, — 5y

in which Theorems 5 and 5' quantify the maximum approximation error Hfly -3,

S,max-

In addition to the absolute error between perceived and true risks, we are also interested in quantifying
the relative error. To this end, we introduce the functional version of weighted quadratic norm (Fan et al.,
2008), defined as |K|s s, = p_l/QH(E;)l/zK(EL)l/QHS’F, where K € HP @ HP and the normalization factor
p~ /2 serves the role of I2y|sx, = 1. To ensure the validity of this functional norm, we assume that
3, has a bounded inverse, which does not place a constraint in practice (see Remark 3.3(i)). With such
functional norm, the relative error can be measured by

R (M e A |

ols e s (24)
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where I, is defined as I,(x) = x for x € Im(%,) and 0 for x € Im(X,)*. Provided that Hf)j - 3ylss, =
Op(Mc+/p/n), the sample covariance fails to converge in || - |s,x, under the high-dimensional setting with
p > n. On the contrary, the following theorem reveals that our DIGIT estimator f);j converges to X, as

long as Mp = o(n?) and w}L;,qsp = 0(1). The same result can also be extended to the FPOET estimator.

Theorem 7. Under the assumptions of Theorem 6, we have HEA];) -3ylsz, = 0p (/\/lgpl/zn_1 +w71L;;qsp).

By Proposition S.2 of the supplementary material, the relative error is bounded by
(W, 32y (w))/(w, By (w)) — 1] < [(Z) 1?2, (3] - L, ,,

which, in conjunction with Theorem 7 and (24), controls the maximum relative error.
4.2 Estimation of regression and discriminant direction functions

The second application explores multivariate functional linear regression (Chiou et al., 2016), which

involves a scalar response z; or a functional response

zt(v) = <yt,,8(-, v)> +e(v), ve,

where B(-,-) = {B1(-,-),...,Bp(-,-)}" is an operator-valued coefficient vector to be estimated. We can
impose certain smoothness condition such that B(u,v) = Y2 Ti;(u)p;(v)" is sufficiently smooth rel-
ative to 3, (u,v) = Yo Ti;(u)p;(v)T, ensuring the boundedness of the regression operator B(u,v) =
Sy Ez(u, u')Cov{y(u'), z¢(v)}du'. Replacing relevant terms by their (truncated) sample versions, we ob-
tain B(u,v) = n~! PIMER Y f];d(u,u’)yt(u’)zt(v)du’. This application highlights the need for estimators

The third application delves into linear discriminant analysis for classifying multivariate functional
data (Xue et al., 2024) with class labels w; = {1,2}. Specifically, we assume that y:(-)jw; = 1 and

vi()|we = 2 follow multivariate Gaussian distributions with mean functions g, () and po(-), respectively,

as studied in Theorems 6 and 6'.

while sharing a common covariance matrix function X,. Our goal is to determine the linear classifier by
estimating the discriminant direction function §;, EL(u, v){p;(v) — py(v)}do, which takes the same form

as the regression function B(u) = §, EL(U, v)Cov{y(v), 2zt }dv encountered in the second application with

a scalar response z;. By similar arguments as above, both applications call for the use of estimators f);d.
4.3 Estimation of correlation matrix function

The fourth application involves estimating the correlation matrix function and its inverse, which
are essential in graphical models for truly infinite-dimensional objects, see, e.g., Solea and Li (2022).
Our proposed covariance estimators can be employed to estimate the corresponding correlation matrix
function and its inverse. Specifically, let Dy (-,-) = diag{3,11(-,*),..., Xy pp(-, )} be the p x p diagonal
matrix function. According to Baker (1973), there exists a correlation matrix function C, with [|Cy |z <1
such that 3, = D;,/ 2CyD31/ ?. Under certain compactness and smoothness assumptions, C, has a bounded
inverse, denoted by ®,, and its functional sparsity pattern corresponds to the network (i.e., conditional
dependence) structure among p components in y;(-); see Solea and Li (2022). Although the inverse of

the estimator ﬁy = diag(f]y,n, ... Dy pp) is not well-defined, we adopt the Tikhonov regularization to
estimate C, by (A?Z(f) = (ﬁy + nIp)_l/Qny(ﬁy + kI,)~'/2 for some regularization parameter x > 0. The
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;ﬁ) = ]5;/2(21/ + nIp)*lﬁ;/Q. Consequently, we can plug into the DIGIT

or the FPOET estimator for estimating C, and its inverse ©,,.

estimator of @, is then given by e)

5 Simulations

For the first data-generating process (denoted as DGP1), we generate observed data from model
(1), where the entries of B € RP*" are sampled independently from Uniform[—0.75,0.75], satisfying
Assumption 3(i). To mimic the infinite-dimensionality of functional data, each functional factor is gen-
erated from fi;(-) = 30, i 5i¢i(-) for j € [r] over U = [0,1], where {¢;(-)}?2; is a 50-dimensional
Fourier basis and basis coefficients &,; = (§414, - - -, &))" are generated from a vector autoregressive model,
£i = A&, +uy; with A = {Aj, = 04P=F+1 o and the innovations {uyi}e[, being sampled in-
dependently from N(0,,I,). For the second data-generating process (denoted as DGP2), we generate
observed data from model (2), where r-vector of scalar factors -, is generated from a vector autoregres-
sive model, v, = A~;_; +u; with {u;},c[,) being sampled independently from N(0;,I,). The functional
loading matrix Q(-) = {Q;x(-)}px, is generated by Q;i(-) = P i q;j1%i(+), where each g5, is sampled
independently from the N(0,0.3%), satisfying Assumption 3'(i).

The idiosyncratic components are generated from &:(-) = 21221 2-24p,,41(-), where each 1, is gener-
ated from 1, = 0.5¢,_1 ; + ¢, with ¢y being independently sampled from N(0,, C¢) with C; = DCyD.
Given this autoregressive structure, it can be shown that M. = O(1). Here, we set D = diag(D;, ..., D)),
where each D; is generated from Gamma(3,1). The generation of Cy involves the following three steps:
(i) we set the diagonal entries of C to 1, and generate the off-diagonal and symmetrical entries from
Uniform[0, 0.5]; (ii) we employ hard thresholding (Cai and Liu, 2011) on C to obtain a sparse matrix
C7, where the threshold level is found as the smallest value such that MaXie[y] ?:1 I (ég #0) <pl—@
for o € [0, 1]; (iii) we set Cy = C7 + 61, where § = max{—Anin(C),0} + 0.01 to guarantee the positive-
definiteness of Cy. The parameter « controls the sparsity level with larger values yielding sparser structures
in Cp as well as functional sparser patterns in 3.(-,-). This is implied from Proposition S.3(iii) of the
supplementary material, whose parts (i) and (ii) respectively specify the true covariance matrix functions
of y¢(-) for DGP1 and DGP2.

We firstly assess the finite-sample performance of the proposed information criteria in Section 2.4
under different combinations of p,n and a for DGP1 and DGP2. Figure 1 presents boxplots of AIC;
(1 =1,2,3) for two DGPs under the setting p = 100, n = 50, a = 0.25,0.5 and r = 3,5, 7. See also similar
results for p = 100, n = 50, a = 0.05,0.1 in Figure S.1 and the corresponding model selection accuracies
in Table S.1 of the supplementary material. We observe a few trends. First, the proposed criteria can lead
to high model selection accuracies in all cases. Second, larger values of « lead to improved model selection
accuracy, as they correspond to a higher relative strength of the common components over idiosyncratic
sF 2 p*? for DGP 1 and |Z.|sr/|ZelsF = p*/? for DGP 2.

Third, different penalty functions g(n,p) have similar impacts on the information criteria when p and n

components, quantified by |3,|sr/|2:

are relatively large.

Once the more appropriate FFM is selected based on observed data, our next step adopts the ratio-
based estimator (19) (or (20)) to determine the number of functional (or scalar) factors. The performance
of proposed estimators is then examined in terms of their abilities to correctly identify the number of

factors. When implementing (19) and (20), we choose ¢, = 0.1 and 719 = 799 = 20. Additional
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Figure 1: The boxplots of AIC; (i € [3]) for DGP1 and DGP2 with p = 100,n = 50, = 0.25,0.5 and r = 3,5,7
over 1000 simulation runs.

Table 1: The average relative frequency estimates for P(7# = r) over 1000 simulation runs.

r=3 r=5 r=17
a p n PP =7r) PHFH=r) PFEP=r) PH =r) PHFEP=r) PFH =r1)
100 100 0.674 0.632 0.468 0.449 0.331 0.355
0.25 200 0.757 0.726 0.622 0.571 0.466 0.483
200 100 0.757 0.647 0.563 0.430 0.345 0.319
200 0.846 0.797 0.717 0.668 0.560 0.521
100 100 0.881 0.893 0.815 0.819 0.640 0.743
0.50 200 0.936 0.921 0.891 0.908 0.805 0.828
200 100 0.977 0.953 0.910 0.911 0.778 0.836
200 0.970 0.962 0.954 0.958 0.898 0.928
100 100 0.974 0.983 0.947 0.963 0.899 0.929
0.75 200 0.979 0.985 0.975 0.978 0.951 0.971
200 100 0.999 0.997 0.989 0.998 0.945 0.980
200 0.997 0.999 0.998 1.000 0.992 0.997

simulations suggest that the results are not sensitive to the choice of r1 g and 72, and a small value of ¢,
leads to good performance. Table 1 reports average relative frequencies 7 = r under different combinations
of r =3,5,7, n = 100,200, p = 100,200 and « = 0.25,0.5,0.75 for both DGPs. Several conclusions can
be drawn. First, for fixed p and n, larger values of a enhance the accuracy of identifying r. Second, we
observe the phenomenon of “blessing of dimensionality” in the sense that the estimation improves as p
increases, which is due to the increased information from added components on the factors.

We next compare our proposed AFT estimator in (10) with two related methods for estimating
the idiosyncratic covariance X., where the details can be found in Section S.6 of the supplementary
material. Following Fan et al. (2013), the threshold level under hard thresholding for AFT is selected as
A = C(\/logp/n +1/ \/P) with C = 0.5. To select the optimal C, we also implemented a cross-validation
method over a candidate set, whose lower bound was determined in a way similar to (4.1) of Fan et al.

(2013) to ensure the positive definiteness of the AFT estimators. However, such method incurred heavy
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Figure 2: The average losses of f)y in functional elementwise £y, norm (left column), Frobenius norm (middle
column) and matrix ¢; norm (right column) for DGP1 over 1000 simulation runs.

computational costs and only gave a very slight improvement. We finally compare our DIGIT and FPOET
estimators with two competing methods for estimating the covariance X,. The first competitor is the
sample covariance estimator ﬁz For comparison, we also implement the method of Guo et al. (2025)
in conjunction with our AFT (denoted as GQW). This combined method employs autocovariance-based
eigenanalysis to estimate B and then follows the similar procedure as DIGIT to estimate f;(-) and X..
Although DIGIT and GQW estimators (or FPOET estimator) are specifically developed to fit model
(1) (or model (2)), we also use them (or it) for estimating ¥, under DGP2 (or DGP1) to evaluate the
robustness of each proposal under model misspecifications. For both DGPs, we set a = 0.5 and generate
n = 60,80, ...,200 observations of p = 50, 100, 150, 200 functional variables. Figures 2 and 3 display the
numerical summaries of losses measured by functional versions of elementwise £, norm, Frobenius norm,
and matrix ¢ norm for DGP1 and DGP2, respectively.

A few trends are observable. First, for DGP1 (or DGP2) in Figure 2 (or Figure 3), the DIGIT
(or FPOET) estimator outperforms the three competitors under almost all functional matrix losses and
settings. In high-dimensional large p scenarios, the factor-guided estimators lead to more competitive
performance, whereas the results of f]; severely deteriorate especially in terms of functional matrix /4
loss. Second, although both DIGIT and GQW estimators are developed to estimate model (1), our
proposed DIGIT estimator is prominently superior to the GQW estimator for DGP1 under all scenarios,
as seen in Figure 2. Third, the FPOET estimator exhibits enhanced robustness compared to DIGIT
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Figure 3: The average losses of f)y in functional elementwise o norm (left column), Frobenius norm (middle
column) and matrix ¢; norm (right column) for DGP2 over 1000 simulation runs.

and GQW estimators in the case of model misspecification. In particular, for DGP2, DIGIT and GQW
show substantial decline in performance measured by functional Frobenius and matrix ¢; losses, while,

for DGP1, FPOET still achieves reasonably good performance.

6 Real data analysis

Our dataset, collected from https://wrds-www.wharton.upenn.edu/, consists of high-frequency ob-
servations of prices for a collection of S&P100 stocks from 251 trading days in the year 2017. We removed
2 stocks with missing data so p = 98 in our analysis. We obtain five-minute resolution prices by using
the last transaction price in each five-minute interval after removing the outliers, and hence convert the
trading period (9:30-16:00) to U = [0, 1]. We construct CIDR (Horvath et al., 2014) trajectories, in per-
centage, by y;(ur) = 100{log{ Py;(ug)} — log{P;;i(uo)}], where Py;(ux) (t € [n],i € [p], k € [78]) denotes the
price of the i-th stock at the k-th five-minute interval (u; = k/78) after the opening time on the ¢-th trad-
ing day. We obtain smoothed CIDR curves by expanding the data using a 10-dimensional B-spline basis.
The CIDR curves, which always start from zero, not only have nearly the same shape as the original price
curves but also enhance the plausibility of the stationarity assumption. We performed functional KPSS
test (Horvath et al., 2014) for each stock, and found no overwhelming evidence (under 1% significance
level) against the stationarity.

For model selection, the information criteria, ICT = —0.632 < IC{ = —0.614, suggests that FFM (1)
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is slightly more preferable and implies that the latent factors may exhibit intraday varying patterns. We
consider the problem of functional risk management in Section 4.1. Our task is to obtain the optimal

functional portfolio allocation w(+) by minimizing the perceived risk of the functional portfolio, specifically,
W = arg min {(w, gy(w)> subject to J w(u)"'1,du = 1.
weHP u
Following the derivations in Section S.5.4 of the supplementary material, we obtain the solution:

1d
“lu Su (u,v)1,dv

Su Su ITE dzdv

uwel, (25)

which allows us to obtain the actual risk. In practical implementation, we treat components of y;(-) as
finite-dimensional functional objects and hence can obtain bounded inverse fJL using the leading eigenpairs

of fly such that the corresponding cumulative percentage of selected eigenvalues exceeds 95%.

Table 2: Comparisons of the risks of the functional portfolios obtained using DIGIT, FPOET, GQW, POET-based
and sample estimators.

Estimator 7 July August  September October November December Average
1 0.0064  0.0127 0.0050 0.0154 0.0081 0.0994 0.0245
3 0.0029  0.0082 0.0032 0.0054 0.0094 0.0080 0.0062
DIGIT 5 0.0057  0.0136 0.0077 0.0075 0.0137 0.0149 0.0105
7 0.0081 0.0105 0.0058 0.0112 0.0096 0.0142 0.0099
9 0.0105 0.0124 0.0067 0.0095 0.0070 0.0201 0.0110
11 0.0130 0.0129 0.0069 0.0077 0.0085 0.0257 0.0125
1 0.0350  0.0136 0.0109 0.0441 0.0378 0.0174 0.0265
3 0.0227  0.0207 0.0150 0.0224 0.0280 0.0524 0.0269
FPOET 5 0.0154  0.0139 0.0222 0.0349 0.0275 0.0199 0.0223
7 0.0142 0.0162 0.0142 0.0108 0.0283 0.0224 0.0177
9 0.0428  0.0180 0.0215 0.0201 0.0306 0.0194 0.0254
11 0.0562 0.0224 0.0129 0.0294 0.0342 0.0348 0.0316
1 0.0063  0.0249 0.2104 1.6762 0.0047 0.4441 0.3944
3 0.0036  0.0092 0.0045 0.0231 0.0093 0.0105 0.0100
GQW 5 0.0062  0.0114 0.0061 0.0063 0.0117 0.0074 0.0082
7 0.0069 0.0152 0.0064 0.0089 0.0081 0.0155 0.0102
9 0.0122  0.0111 0.0063 0.0090 0.0114 0.0120 0.0103
11 0.0140 0.0157 0.0087 0.0072 0.0103 0.0251 0.0135
1 0.0271  0.0272 0.0352 0.0197 0.0242 0.0389 0.0287
3 0.0270  0.0342 0.0463 0.0267 0.0257 0.0405 0.0334
POET 5 0.0185  0.0269 0.0346 0.0229 0.0273 0.0430 0.0289
7 0.0214 0.0275 0.0373 0.0226 0.0243 0.0375 0.0284
9 0.0206  0.0250 0.0411 0.0241 0.0209 0.0342 0.0277
11 0.0178 0.0271 0.0407 0.0223 0.0229 0.0366 0.0279
Sample 0.0203  0.0290 0.0372 0.0254 0.0267 0.0310 0.0282

Following the procedure in Fan et al. (2013), on the 1st trading day of each month from July to
December, we estimate fly using DIGIT, FPOET, GQW and sample estimators based on the histor-
ical data comprising CIDR curves of 98 stocks for the preceding 6 months (n = 126). We then de-
termine the corresponding optimal portfolio allocation wW(ug) for k € [78]. To illustrate the superi-
ority of functional analytic methods, we also introduce a non-functional competing method based on
the POET estimator, whose portfolio construction procedure is detailed in Section S.5.5 of the supple-

mentary material. At the end of the month after 21 trading days, we compare actual risks calculated
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by 782 Dk el7s] W (ug) " {2171 32 yi(up)yi(up) " YW (up ). Following Fan et al. (2013) and Wang et al.
(2021), we try 7 = 1,3,5,7,9 and 11 to check the effect of r in out-of-sample performance. The numerical
results are summarized in Table 2. Among the functional analytic methods, we observe that the optimal
functional portfolio allocation created by DIGIT, FPOET, and GQW result in minimum averaged risks
over six months as 0.0062, 0.0177, and 0.0082, respectively, while the sample covariance estimator gives
0.0282. The risk has been significantly reduced by at least 37% using our factor-guided approach. Addi-
tionally, the POET-based method yields a minimum averaged risk of 0.0277, providing empirical evidence

for the advantage of functional analytic methods.

7 Discussions

Our theoretical results are established under a sub-Gaussian condition, which is imposed to facilitate
the use of Hanson-Wright-type concentration inequalities for time series within Hilbert space (Chang
et al., 2024) in our non-asymptotic analysis. To the best of our knowledge, the existing literature on con-
centration inequalities for high-dimensional functional time series are all of Hanson—Wright-type. It is thus
of interest to relax such sub-Gaussian condition to a weaker finite moment condition beyond functional
linear process, and based on which developing more generalized Nagaev-type concentration inequalities for
high-dimensional time series (Zhang and Wu, 2021) within Hilbert space to aid our theoretical analysis.
This relaxation will result in allowing the dimension p to grow polynomially rather than exponentially
with n. To achieve this, we also need to propose a new functional dependence measure instead of our
functional stability measure defined in (22) to characterize how the established concentration results are
affected by the complex serial dependence structure.

It is interesting to conduct specification tests such as testing one FFM against another and testing
the constancy of the factor or loading functions. Both tests rely on the inferential theory for FFMs,
which requires to explore the limiting distributions of estimated quantities. The existing literature on
FFMs only studies the estimation of factors, loadings and number of factors, without delving into the
corresponding limiting distributions. Note that the inferential theory for FFM based on MFPCA can be
developed for FFM (2) given its equivalence to the least squares method. By comparison, the inferential
theory for the eigenanalysis of doubly integrated Gram covariance specific to FFM (1) presents significant
challenges. Moreover, deriving the limiting distributions under functional domain involves characterizing
the magnitude of functional quantities using a suitable functional norm such as Lo or supremum norm,
presenting additional complexities compared to scalar time series.

While our paper focuses on fully observed functional time series, it is also interesting to consider the
common practical scenario, where each curve y;(-) is only partially observed, with errors, at T;; random
time points. For densely observed functional time series with 7};’s being larger than some order of n, it
is customary to apply nonparametric smoothing to the observations from each curve (Zhang and Chen,
2007), which results in reconstructed curves y;(+)’s serving as new inputs for subsequent analysis. When
T};’s are bounded, referred to as sparsely observed functional time series, the pre-smoothing step becomes
inapplicable. An alternative approach involves local linear surface smoothing by pooling observations
together from all curves (Chen et al., 2022). This method yields smoothed estimates of ¥, j(u,v)’s that
can be utilized in our methodological development.

The aforementioned topics are beyond the scope of the current paper and will be pursued elsewhere.
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Appendix

This appendix contains the technical proofs of the results in Section 2 and the results for FFM (1)
in Section 3, i.e., Theorems 1-6 and Corollary 1. For the technical proofs of the results for FFM (2) in
Section 3 and the results in Section 4, see the supplementary material, which also provides the proofs of
some technical lemmas in the appendix, some further derivations, additional simulation results and real
data results. Throughout, we denote the multiplications of matrix kernel functions as M = KG € HP @ H?
for K, G € H? ® HP, where M(u,v) = {,, K(u, w)G(w,v)dw.

A Proofs of theoretical results in Section 2

A.1 Technical lemmas

We first introduce useful theorems to prove Proposition 1. In the following two lemmas, {);} e[y are
the eigenvalues of 3 € RP*? in a descending order and {§;} e[, are the corresponding eigenvectors. Simi-

larly, {XJ }je[p) and {E] } je[p] are the corresponding eigenvalues and eigenvectors of 3 € RP*P, respectively.
Lemma A.1. (Weyl’s theorem; Weyl (1912)). |XJ —\j| < 1% = 3| for j e [p].

Lemma A.2. (A useful variant of sin(@) theorem; Yu et al. (2015)). If E;éj > 0 for j € [p], then

|5 - =)/v2 |
min (|Xj—1 = Al [Aj — Ajgal)

HE; =&l <

The functional version of Weyl’s theorem has been studied in Lemmas 4.2 and 4.3 of Bosq (2000).
Let {7;}2; be the eigenvalues of the kernel function 3(-,-) in a descending order and {¢;(-)}2, are the
corresponding eigenfunctions. Similarly, {7;};°, and {@;(-)};2, are the corresponding eigenvalues and

eigenfunctions of 3(-,-), respectively.

Lemma A.3. (Lemma 4.2 in Bosq (2000)). |5 — 1| < |% — ||z for all 4.

Lemma A.4. (Lemma 4.3 in Bosq (2000)). If {@;, ;> = 0, then

2V2|E - 2,

min (|%-1 — 7|, |70 — Tiga])

lp; — il <

The following lemmas introduce some useful functional norm inequalities. Their proofs are relegated

to the supplementary material.

Lemma A.5. Suppose that K € HP @ HP is a Mercer’s kernel with the spectral decomposition K(u,v) =
S i (W) (v)T, where {N}2, are the eigenvalues of K in a descending order and {¢;(-)} are the
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corresponding eigenfunctions. Then, we have

(i) tr{§ S K (u, v)K(u,v)"dudv} = tr{f KK (u,u)du} = [K|Zp = 202, A
(i) |§ § K (u, v)K(u,v)"dudv| = || KK (u, v)du| = [K|% = X3;

(iii) tr{§ K(u, u)du} = |[K|x = 225 M.

Lemma A.6. Suppose that K, G € HP @ HP are Mercer’s kernels, then we have
(i) |§ S K(u,v)G(u v)Tdude1 HK
(i) |§ § K (u,v)G(u U)TdudUH
(iii) |§ § K(u, v)G(u, v)"dudv||
(iv) |§ § K(u, v)G(u, v)"dudv|

)1/2( 7 )1/2;
{|| { gK u, 0)K (u, v)Tdudo |} {|| § § G (u, v) G (u, v) Tdudo]}

< (
< 12,

Lemma A.7. Suppose that ¥ = {£;;(-,)}pxp with 3X;; € S and S e HP @ HP are Mercer’s kernels. Then
we have (i) |ZE]z < [Sle - 1Z]e, (06) 2] < and (iii) |z < 1S 415142
|Zi5ls = [Z5ills for alli,j € [p], then |Z]z < H2”$ 1-

. Furthermore, if

Lemma A.8. Suppose that K, G € HP Q HP are Mercer’s kernels, then we have
(i) tr{ KG(u, u)du} = tr{§ GK(u,u)du}, i.e., |[KG|y = |GK]|n;

(ii) tr{§ KG (u, u)du)} < [K|tr{§ Glu,u)du}, iec., [KGly < K| |Gl

(iii) |[KG|sr < |[K|z|Gls,p-

Lemma A.9. For A e RP*? and K = {Kj(-, -)}qxq e HY ® HY, we have

< [AfofK and |K [ =1lA
HAIIFHKlls v, and IKAT
and HKAT < [Klis.o Ao = |
< HAH1H and [KA™ Ay = HAHOOHK”S,L

Lemma A.10. For f,ge H", and A € RP*", we have
(1) |Af] < [A]-[£];
(ii) | K|s < |If]| - |g|| where K(-,-) €S is defined as K(u,v) = f(u)"g(v).

A.2 Proof of Proposition 1

(i) Note that {\;}#_, are the non-vanishing eigenvalues of & = {3, (u,v)%, (u, v)"dudv, and {p*6;};_,
are nonzero eigenvalues of 2y, while the other p — r eigenvalues are zero. Then applying Lemma A.1
yields that, for each j € [r],

A —p%05] < |2 - Q] = [2R],

and for r +1 < j <p, |A\j] = |A; — 0] < [|Qx].
(ii) By Lemma A.2, for j € [r] and EJT»IN)J >0

1Qr[/v2 .
min(|\j_1 — p20;|, [p?0; — Nj11l)

I€; — bj| <
Note that there exists a generic constant ¢ > 0 such that |\;_1 — p?0;| > p?0,_1 — 0| — |\j_1 — p?0,_1| >
cp? since |A\j_1 — p*0;_1] < |Qr| = o(p?) from part (i). If j < r, a similar argument implies that

p%0; — Nji1| > cp? I j = r, |p?0, — M| > P?0, — |As1| > cp? since |A\11] < Qg = o(p?) by using
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part (i) again. Hence, min(|A;—1 — p?0;l, [p*0; — Aj11]) 2 p?, and if E}Bj = 0, we have
I€; —bjl = 0(172”971“), for j € [r].

A.3 Proof of Proposition 2

To prove Proposition 2, we first present a technical lemma with proof in the supplementary material.

Lemma A.11. Suppose that Assumption 1' holds. Then, {pV¥;};c[y] are the non-vanishing eigenvalues of
Q()Q(-)" € HP @ HP with the corresponding eigenfunctions {q;(-)}je[r]-

We are now ready to prove Proposition 2.
i) Note that {r;}?2, are the eigenvalues of 3, (-,-), and {p¥,;}i_, are the r non-vanishing eigenvalues of
i=1 Y JJ5=1
QQ"(+,-) by Lemma A.11. Applying Lemma A.3, we have, for j € [r],

75 =05 < |2y — QQY 2 = [ Ze],

and, for j >+ 1, |n| = |7 — 0] < |3z

(ii) By Lemma A.7(iii), we have |2.]z < HEEHE/?HEEH?@ = O(sp) = o(p), which yields that 7; = pd; = p
for j € [r]. Under Assumption 1', ¥; are distinguishable and bounded away from both zero and infinity,
then min(|pd;—1 — 74,75 — p¥j41]) = p for j € [r]. It follows from Lemma A.4 that [¢,; — q;|| =
O(p~|=.|lz) for j € [r].

A.4 Proof of Proposition 3

The sample covariance matrix of estimated idiosyncratic components by using the constrained least

squares follows that

~

B(u,0) =+ {Y(w) ~ QT HY ()" ~ PR} = Y)Y ()" - Q)"

where we use the normalization condition n'T' T’ = I, and Q() = n*IY(-)f‘. If we can show that
Q(u)@(v)T = 2i-1 7j®;(u)@;(v)", then by the spectral decompositions of the sample covariance estima-

tor

~

2 (u,0) = YY) = 3 53;@;0)" + Rlu,0) = QuQ)" + $.(u,v),

we have f{(, )= ig(', -). Thus, by applying the adaptive functional thresholding with the same regular-
ization parameters to the same remainder covariance matrix functions, we have ﬁ““(-, ) = ENJ?(-, -), and
then f);(, )= f);(, -), which gives the desired result.

We next show that Q(u)Q(U)T =211 75%;(u)@;(v)" holds. To do this, we impose another identifi-

ability condition that can serve as an alternative (see also Remark 2.1) to Assumption 1'.

Assumption A.1. p7' {Q(v)"Q(u)du = I, and ¥, is diagonal with distinct diagonal elements being

bounded away from both 0 and 00 as p — 0.

Note that Assumptions 1' and A.1 can be converted to each other by orthogonal transformation. Thus,
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for the minimization problem (17), we can use the following two equivalent normalization constraints:

nt Z’Yt’)’t =1, and p~ JQ )" Q(u)du is diagonal,

" (A1)
n1 Z ~,v¢ is diagonal, and pt JQ(U)TQ(u)du =1,.

t=1

Note that (A.1)(i) is used in Section 2.2 to obtain FPOET estimator. Following the similar procedure,
we obtain that Q(-) = p(@1(-),...,&,(-)) and I' = p~ { Y (u)"Q(u)du is the solution to (17) under
(A.1)(ii). One can show that the two solutions under normalization constraints (A.1)(i) and (ii) are
equivalent and can be converted to each other through an orthogonal matrix, i.e., there exists an r x r
orthogonal matrix H such that Q(-) = Q(-)H and I' = TH. Notice that Q(-) = VPie1(), .., @,(-)} and
I =p ' {Y(u)"Q(u)du, then we have

S g —1JQ Y (u dufY v)dv = p ”Q V(=LY (u)Y (0)"} Q) dudo
! [@i(w) 2y }T[f (00 {@1(0)... @, (v)}dv | du

=p~! J{QI(U)T’ LB AP (W), . . 73, (u)kdu = p diag(F, . .., 7).

Since Q()I' = Q()HH'T" = Q()T'", it follows that

B Proofs of theoretical results in Section 3

B.1 Technical lemmas

Lemma B.12. Under Assumptions 3(iv) and 4, we have that,

(i) for any i, j € [r], [n~' X4y fuifis — Spajls = Op(1/v/n), In~1 33, fiff" — = Op(1/v/n);

(id) for any i, j € [p], [n ™" 33, etiej—Seijls = Op(Me/v/n), |n~! iy eref —Be|smax = Op(Mer/logp/n);
(i) for any i, j € [p], Hn_l Z?=1 Yyt —Zyijls = Op(Me/+/n), ||”_1 Z?=1 YtYi —2yllsmax = Op(Mcr/logp/n).

We next introduce a lemma to give the perturbation rate in elementwise £, norm of the eigenvectors

if a matrix is perturbed. Suppose that A € RP*P is a symmetric matrix. Let the perturbed matrix be
A=A+ E, where E € RP*P is a symmetric perturbation matrix. Suppose the spectral decomposition of
A is given by A =370, \iviv] + >0 Aivivl, where |\ > [Ag| > -+ > |Ay|. Clearly, A, = >0, \iviv)
is the best rank-r approximation of A. Analogously, the spectral decomposition of A = D1 Xﬁﬁg +
i, MViVT. Write V = (vy,...,v,) € RP*" and V = (¥1,...,%,) e RPX",

>

Lemma B.13. Suppose ¢ satisfies © > |E| and for any i € [r], the interval (A; —t, A; + ) does not contain
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any eigenvalues of A other than \;. Then, there exists an orthogonal matriz U € R"*" such that

21| B oo
Al = A = Arllo)yp )

”{[U - VHmax =0 <(

where j1 = (V) is the coherence of V defined as (V) = (p/r) max; 33;_, V2
The proof of Lemma B.13 can be found in Fan et al. (2018).

Lemma B.14. (Theorem 4.2.5 in Hsing and Eubank (2015)). If K(-,-) is a compact and nonnegative

definite kernel matriz function with associated eigenvalue/eigenfunction pairs {A;j,e;(-)};;, then

A = max M.

eespan{er,...,ex_1}+ HeH2

Lemma B.15. Suppose that K, G € HP @ HP are Mercer’s kernels, |GT||z < ¢, and [K — G|z = 0,(c;; 1)
for a sequence ¢, > 0. Let K be the restriction of K to Ker(G)*. Define K' as Kf(x) = K~1(x) for
x € Im(G) and K'(x) = 0 for x € Im(G)*L. Then, we have (i) |K'|z < 2¢, with probability approaching
one, and (i) |K' — G|z = Op(c}) |K ~ G| ..

Lemma B.16. (i) Under Assumptions 3(22)(21}) and 4, maxepn [fell = Op(v/logn), maxep, Hp 2gy| =
Op(vlogn) and maxey,) [p~ 12BTe,| = O,(+/logn).
(ii) Under Assumptzons 3'(ii) (iv) and 4', maxepn) |74l = Op(v/logn), maxep, [lp~ 12§ Q(u) et (u)du| =

Oy ) and ey [ (er, ) ECer 03} = Opllogn) for cach £+ [n]
B.2 Proof of Theorem 1

The proof of part (i) of Theorem 1 mainly relies on Lemma B.13. To prove Theorem 1, we first present

some technical lemmas. The proofs of Lemmas B.17-B.20 are provided in the supplementary material.

Lemma B.17. Suppose that Assumption 1 holds. Then there exist some constants Cpax, Coo > 0 such
that (1) |Ells,max < Cmax, (ii) max(| 1ZflsF) < Coo.

<1, (i) |2

and (iii) |3y]s1 < p-

Lemma B.19. Supposing that Assumptions 1-3 hold, we have || = p? and |Qr| < p.
Lemma B.20. Under the assumptions of Theorem 1, we have |Qr|w < psp = o(p?).

Lemma B.21. Under the assumptions of Theorem 1, we have (i) | — Q| = Op(Mcp?+/1/n) = 0,(p?),
and (ii) [Q — Qo = Op(Mep*/logp/n) = 0p(p?).
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Proof. (i) Note that

Q- Q| = IJ AS (u,v)X, (u,v)" dudv —JJ (u, )2, (u, v)"dudv

- ff{f)j(u v) — Xy (u, v)}Ey( )" + X, (u, ){ﬁy(u v)" Ey(u,v)T}dudv
= JJ EA]Z(U,U) — Ey(u,v)} {f]j(u,v)T — 3y (u,v)" + Ey(uﬂ’)T}
2, (u,v) {ﬁj(u, v)" =3y (u, U)T} dudUH

+
< ff {flj(u,v) - Ey(u,v)} {ﬁj(u,v) - Ey(u,v)}T dudv

+2 ‘Jf{flj(u,v) - Ey(u,v)} 5, (u, v)"dudv

~S ~S a8

<IE, = BylE + 28, = Byle|Byle < 18, - Byld e + 215, - DylsrBy
p P n 1/2
= Z 2 Yeiyj — Sy,ijllS + 2 (Z kR Z Yty — yij !?s)
i=1j5=1 t=1 i=1j5=1

(Map \/1/7> = op(p”),

where the second inequality follows from Lemmas A.5(ii) and A.6(iv), the third inequality follows from
Lemma A.7(ii), and the last line follows from Lemma B.12(iii), the fact that |K|sr < p||K|s max and
Assumption 4(ii).

(ii) The argument can be proved in matrix o, norm following the similar procedure. Specifically,

10— Ql, < H”{ﬁj(u,v) 3, ()} {£5 () — By (0,0)} dudv
+2 ‘ J f {ij (u,v) — 3y (u, v)} >, (u, v) dudo

~S ~S ~S
<[2, = BylselB, —Zyls1 +2[2y, = Byls0lBylsa

£, - = = Op(Mp*v/logp/n) = 0,(p?),

where the first inequality can be obtained in a way similar to (B.2), the second inequality follows from

o]

0

Lemma A.6(ii), and the last line follows from Lemma B.12(iii) and Assumption 4(ii). O

Lemma B.22. Let {j‘j}§:1 be the eigenvalues of Qina descending order. Under the assumptions of
Theorem 1, it holds that 5\,~ > p? with probability approaching one. Furthermore, 5\Z — 5\j > p? for all
1 <@ < j < r with probability approaching one.

Proof. By Proposition 1 and Lemma B.19, the r-th largest eigenvalue ), of Q satisfies A, > p?0, — |\, —
p*6,| = p*6, — | Qr| = p*. Applying Lemma A.1 yields that |\; — \j| < |Q -], for j € [p]. From Lemma
B.21(i), we have Hﬁ — Q| = 0,(p?) and hence \, = p? with probability approaching one. Furthermore,
for all 1 <14 < j < r, with probability approaching one,

S A= = A — A= Ml = 1 = Al = 526 — 0)) — 0,(0) 2 1
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O

The following lemma is used to prove Theorems 3 and 6, and its proof is provided in the supplementary

material.
Lemma B.23. Under the assumptions of Theorem 1, we have |B — BUT||p = Op(Mer/p/n +1//D).

We are now ready to prove Theorem 1.

(i) Let E = Q — Q be the p X p perturbation matrix. By Lemma B.21, we have

|E[lo < € — Q] = Op(Mep*/logp/n) = 0,(p?)

Corresponding to Lemma B.13, here A = €, A= ﬁ, and the r-th eigenvalue of A satisfies A, = p? by
Proposition 1 and Lemma B.19. Then, |A — A,|x <
B.20. Note that V = (£;,...,&,) € RP*", and denote §; = ({15, - - -,&p;j)"- The coherence of V is given by

12— Qrllw = |QR]00 = psp = 0(p2) from Lemma

— s b2, _ b)) =01
p=n(V TﬁggXZﬁm H};&’]‘]Zl 5+ 1€ —Dbil?) = o),

since max;e(y) bij = maxiep p~/?bij; < pV2Blmax = O(p~'/?) and [|€; — b;| = O(p~?) if &]b; > 0 by
Proposition 1(ii) and Lemma B.19. In addition, supposing that ¢ ~ |E|| = o,(p?) but ¢ > |E||, we can
show that for any j € [r], the the interval (A\; —¢, A; +¢) does not contain any eigenvalues of €2 other than

A; with probability approaching one. Thus by Lemma B.13, we have for j € [r], if E]TE ; =0,

r5/2,,2
z 1 E o log p
1€; = &llmax = Op ( E = 0p [ Mey[= 7]

For j € [r], if €]T-l~)j > 0, we have ||§; — ngmax <& — IN)JH = O(p~!), which implies that Héj meax =
Op(Mcn/logp/pn + 1/p). Since B = \/13@1, . ,ET) and B = \f(bl, ...,b,), one can obtain that there

exists an orthogonal matrix U € R"*" (the same as that in Lemma B.23) such that

|B = BU||nax = Op(Mcr/logp/n + 1/3/p) = 0p(1),

where the matrix U is used to adjust the direction so that each bJT-lA)j >0 for j € [r].
(i) Note that f,(-) = p~ B y;(-) = p ' BT{B£(-) + &;(-)} for ¢ € [n] and then

£() — Uf,(-) = p ' (B"B — UBTB)f;(-) + p'BTey(). (B.3)
For the first term of (B.3), applying Lemmas A.10 and B.23 yields that
|p~(B"B — UB"B)f;| < p~!|BT — UB”||B||f;| = Op(Mn/1/n +1/p),

since BT — UBT| < |B — BU™|p = Op(Mor/p/n + 1/y/B), [B| = Aiax(B™B) = /p and [fi| = O,(1).

For the second term of (B.3), notice that
[p™' B e| = [p~"UB /| + [p~ (B" — UB )&y = Op(Mer/1/n +1/y/),
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which follows from [p~'BTe;| = O,(1/,/p) by Assumption 3(ii), |BT — UB™| = Op(Mc/p/n + 1/4/D)
by Lemma B.23, and |e;| = O,(y/p) since E|e;|* < pmaxe,) Eless|* = pmaxep, [Seila = O(p) by
Assumption 3(iv). The result follows immediately that for ¢ € [n],

£ = U] = Op (Me/v/n + 1/p)

and thus n=1 Y} |f, — Uf|2 = Op(M2/n + 1/p).

(iii) The proof procedure is similar to part (ii). We only need to notice that by Lemma B.16(i), we have
maxyef) [f] = Op(vIogn), maxiepy) [p~ et = Op(y/logn/p) and maxiep,) [p~ Be| = Op(+/log n/p).
B.3 Proof of Corollary 1

By Theorem 1(i)(iii), Lemma B.16(i), and Assumption 3(i), we have
~ T v ~ v ~ o ~
max | b, f; — b} ;| <max |b; — Ub;| - max || + max |b;| - max |[U"f; — |
] i€[p] te[n] i€[p] teln]

i€[p],te[n
=Op(wpp - \/@) + Op(./\/ls\/log n/n + +/logn/p)
=0, (M+/lognlogp/n + +/logn/p).

B.4 Proof of Theorem 2

(i) By Proposition 1 and Lemma B.19, |\; — p?0;| < |Qr| < p for j € [r], which implies that \; = p?
for j € [r], and [A\;| < p for r+1 < j < 7r19. By Lemmas A.1 and B.21, it follows that |5\j — Al <
Q- Q| = Op(Mcp?n=12) for j € [p]. Let Br, = Mcp?n~12 and Bin = p + Mcp*n~'/2. Then, we have
IN; — Aj| = Op(B1n) for j € [r] and |\;| = O,,(Eln) for r + 1 < j < 7r10. We next verify the following
conditions (a), (b) and (c) by Assumptions 4(ii) and 7:

(a) (V10 + Bin)/(AN2/A1) = (V10 + p + Mep®n=12) p? — 0;
(b) /Bln/)‘r = M5p2n_1/2/p2 = Man_1/2 — 0;
(©) B2 /(91nAr) = (p + Mcop*n=12)2/(91,p%) = 07} + 97  M2p?n~t — 0.

Under (a), (b) and (c), we apply Proposition 1 of Han et al. (2022) and obtain P(#” = r) — 1 with 77
defined in (19), which completes the proof of Theorem 2(i).

(ii) By Proposition 2, |7; — pd;| < ||Zc|z = O(1) for j € [r], which implies that 7; = p for j € [r], and
|7;] = O(1) for r +1 < j < rpp. By Lemma A.3 and the proof of Lemma S.5 of the supplementary
lsF = Op(/\/lgpn_l/2) for j € [p]. Let S, = M.pn~/2 and
Bgn =14 M pn—Y/2. Then, we have |75 —Tj| = Op(Ban) for j € [r] and |7;| = Op(ggn) forr+1<j <rap.
We next verify the following conditions (d), (e) and (f) by Assumptions 4'(ii) and 7"

(d) (Y2n + BQn)/(TE/Tl) = (Vo + 1+ Mapn_l/Q)/p — 0;

(e) BQn/Tr = Mgpn_l/Q/p = _/\/lsn_l/2 — O’

material, it follows that |7; — 75| < Hflj -3,

(£) B2,/ (92n7) = (1 4+ Mepn=Y2)2)(99,p) = 95, p~ 1 + 95  M2pn~1 — 0.

Under (d), (e) and (f), we apply Proposition 1 of Han et al. (2022) and obtain P(7#" = r) — 1 with 7
defined in (20), which completes the proof of Theorem 2(ii).
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B.5 Proof of Theorem 3
We denote rg = 71,0 A 72,0 for simplicity.

Lemma B.24. (i) Under Assumptions 1-4 and 8, there exists some constant ¢; > 0 such that IP’{ log VP (r)+
¢1 < mingep,_1log V7 (k)} — 1 and P{log VP (k) + ¢1 <logV”(k)} — 1 for r <k <.

(it) Under Assumptions 1'-/" and 8', there exists some constant c > 0 such that P{ mingep,_1ylog VP (k) =
log V7 (r) + ca} — 1 and P{log V" (k) = log V" (k) + ca} — 1 for r < k <.

Proof. Let e1x:(+) = y¢(-) — 1BkBkyt( ) and egpi(+) = yi(+) — n_lYt(-)f‘k‘)\/M for t € [n] and k € [ro],
where By, is the estimated loadlngs by DIGIT estimator with & functional factors, and I'y is the estimated
factors by FPOET estimator with k scalar factors. By definitions, it can be seen that

— Z lewl* = — Z Jem Ter(u {j Z €1kt (u)err (u du} =S e

and similarly it follows that V7 (k) = p‘lﬂf]j’%H A Where f)jlk and f]j% are the sample covariance
of {e1xt(-)} and {eos(-)}, respectively. Notice that x,(-) = Bfi(-) and k¢(-) = Q(-)y, are the common

components of the two respective FFMs. By Section S.5.2 of the supplementary material, we have
o0
v) = prﬂ,bi(u)wi(v)T and X, Z pOvi(u)v;(v)T for  (u,v) e U>.

(i) For the first argument, note that e,y — e, = Bf, — ﬁ?t for t € [n]. On the one hand, by Theo-
rem 1 and Lemma B.23, it can be shown that n=! > | |[Bf; — ﬁ?tHQ = Op(M?2p/n + 1) = 0p(p). Since
E(n~' Y0 |ed]?) = n7t X0 Eled]|* = o(p) by Assumption 8(ii) we have n=1 3" | |e:]|? = op(p). By
using the inequality (a + b)? < 2(a? + b?), it follows that HEe 17‘”/\/ = 0p(p) and thus VP(r) = op(1).
On the other hand, by Assumption 8(i) and Lemma A.5(iii), it can be shown that for 1 < k <
r,nt Dy e — || = p with probability approaching one, since Z;’ik 41 pw; = p and the leading
k eigenfunctions of :VJZ cannot recover the space spanned by the eigenfunctions of X, corresponding to
the eigenvalues with order p. By using the inequality (a — b)? > a?/2 — b% and n= L 331" | e = op(p),
we have Hf);kH v = pand V7(k) 2 1 with probability approaching one for 1 < k < r. Hence, there
exists some small constant 0 < ¢; < 1/2 such that minge[,_1) V7 (k)/V?(r) > 1+ 2¢; with probability ap-
proaching one for all large p and n, which implies that log{mingep,_11 V" (k)/V?(r)} = ¢1 with probability
approaching one by similar argument to the proof of Corollary 1 of Bai and Ng (2002).

For the second argument, following the similar procedures to the proof of Lemma 4 in Bai and Ng
(2002), it can be shown that for any fixed k > r, V2 (r) — VP (k) = Op(M2/n+1/p) = 0p(1), which implies
that VP (k) = 0,(1) for k > r. By Assumption 8(i) and using the similar procedures to the first argument,
we have V7 (k) 2 1 with probability approaching one. The desired results hold accordingly.

(ii) The proofs are similar to part (i). To show VP (k) 2 1 with probability approaching one, it relies on
Assumption 8'(i) that rank {§ § 3. (u, v) 2, (u, v)"dudv} = rank {§ Q(u)Q(u)"du} > k+1 for k € [ro]. O

Lemma B.25. Suppose that g(p,n) — 0 and (M?/n + 1/p)~tg(p,n) — © as p,n — oo for the penalty
functions g®(p,n) and g” (p,n) in (21). Then, (i) under Assumptions 1-4, P{ICP(r) < ICP(k)} — 1 for
k€ [ro]; (ii) under Assumptions 1'-4', P{IC” (r) < IC”(k)} — 1 for k € [r].
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Proof. (ii) Let Ty = (v14>---»Ynk)" be an x k matrix. Define the average of squared residuals when
using {7 ;Jte[n] s k known factors for the estimation of FFM (2):

V7 (k,T}) —m(lr;*ZHyt Qv sl = ;Z lye = n Y Thyy )
t=1

Note that V7 (k,T'x) = V7 (k). The proof can be organized in the following three steps.

Step 1. For any fixed k € [rg], define Hy = n_lvglf‘zI‘SQ(u)TQ(u)du, where Vy, is the diagonal
matrix of the first k largest eigenvalues of f]; in a decreasing order, I' = (v,...,7,)" is the true
factors and T'j, = (F1ks -+ > Yng)" is formed by k estimated factors using FPOET. Similar to (S.6) of the

supplementary material, we have

Vk - EE/E
_Hk7t:( ) { Z’Ytk <t t> Z'Yt’kt’t"‘ Z%/kﬁt/tJr Z'Yt’kgt/t}

p t’l t/l t/l

where (g, npy and &y take the same definitions as (S.6). Analogous to the proofs of Lemma S.4 and
Theorem 1'(i), it can be shown that n ™t Y3 | |F, 5 — ¥¢|* = Op(M2/n + 1/p) for any fixed k € [ro].
Step 2. Following the similar procedures to the proofs of Lemmas 2—4 in Bai and Ng (2002) and

combining the result in Step 1, we obtain that: (i) for k € [ ’VF (k,T}) — V7 (k,H;T) | = Op(M./\/n+
1/y/p); (ii) for k € [r], there exists some constant ¢j > 0 such that Vf(k Hkl") V7 (r, I‘) > ¢}, with
probability approaching one; (ii) for r + 1 < k < ro, Wf(k, f‘k) Vf (r, I‘ ! = 0,(M2%/n + 1/p).

Step 3. For k € [r], consider that

VZ(k,Ty) — VZ(r,T)) ={V7 (k,T}) — V7 (k, HkI‘)} +{V (k: H.T') — V7 (r,H,T)}
+{V7(r, H,T) = V7 (r,T,)} > ¢

with probability approaching one, where the first and third terms are both O,(M./+/n + 1/,/p) = 0p(1)
by the first argument of Step 2 and the second term is large than ¢j with probability approaching one
by the second argument of Step 2 since V7 (r, H,T') = V7 (r,T'). Thus, there exists some small constant
0 < €1 < 1/2 such that V7 (k)/V7(r) > 1 + 2¢; with probability approaching one, which implies that
log{V”7(k)/V7(r)} > € with probability approaching one. Since g”(p,n) — 0 as p,n — o, we have
P{IC* (k) > IC”(r)} — 1 for k € [r]. For r + 1 < k < r¢, the third argument of Step 2 shows that
VZ(k)/VZ(r) = 1 + Op(M2/n + 1/p), which implies that log{V”(k)/V*(r)} = Op(M?/n + 1/p). As
(M2/n + 1/p)~tg” (p,n) — oo, it follows that P{IC” (k) > IC7(r)} — 1 for r + 1 < k < 7o, which
completes the proof of part (ii).

(i) Let By be a given p x k loading matrix of k& functional factors. Define

VP (k,By) = min — y
B Br) = et ]pntziu b

1 n
= — > ly: — p 'BiBiyi[.
P

Note that XN/D(k:, ﬁk) = V?(k). The remaining proof procedures are similar to part (ii) and omitted. [

We are now ready to prove Theorem 3.
(i) Define the following events: Ey = {ICP(#7) = ICP(r)}, Eor = {ICP(r) < ICP(k)} for k € [ro], B3 =
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{IC?(r) < mingep—1)IC7(k)} and Ey = {ICP(k) < IC7(k)} for r < k < 79. As p,n — 0, we
have P(E;) — 1 by Theorem 2(i), P(F3;) — 1 by Lemma B.25(i), P(E3) — 1 by the first argument
of Lemma B.24(i) and ¢g”(p,n) = o(1),9" (p,n) = o(1), and P(E4) — 1 by the second argument of
Lemma B.24(i) and g”(p,n) = o(1),g” (p,n) = o(1). Let Ey = (2, B2, and Ey = (2, E4. Then,
under the event E = Ey () Eo( ) Es( ) F4 with P(E) — 1, it follows that

ICP(#P) = ICP(r) = min ICP(k) < min IC” (k) < IC” (),
ke[ro] ke[ro]

where the first equality holds under Ej, the second equality holds under Fs, the first inequality holds
under E3 ()| By since mingep,1 IC7 (k) = mingep, 11 IC7 (k) AICT (r) AICT (r+1) A+ - - AIC7 (1) > ICP (1) A
ICP(r+1)A---AICP(rg) = minge[,,) IC”(k), and the second inequality holds automatically, which together
show the desired result.

(ii) The proof is similar to part (i). Define the following events: Ey = {ICT(#7) = ICT(r)}, Eqj, =
{IC7 (r) < IC*(k)} for k € [ro], B3 = {IC7(r) < mingep,_ 11 ICP(k)} and Ey, = {IC7 (k) < ICP(k)} for
r <k < rg. As p,n — o0, we have P(E;) — 1 by Theorem 2(ii), P(Es;) — 1 by Lemma B.25(ii),
P(E3) — 1 by the first argument of Lemma B.24(ii) and ¢®(p,n) = o(1), " (p,n) = o(1), and P(Ey,) — 1
by the second argument of Lemma B.24(ii) and ¢®(p,n) = o(1), ¢” (p,n) = o(1). Let Ey = 2 Eoy, and
Ey = N, Eyi. Then, under the event E = Ey (| Ey () Es() Ex with P(E) — 1, it follows that

IC7 (#7) = IC” (r) = min IC” (k) < min IC”(k) < ICP(#7),
ke[ro] ke[ro]

where the first equality holds under E’l, the second equality holds under E’g, the first inequality holds
under E5 () Ey since mingery,] IC7 (k) = mingep,—1) IC7 (k) AICP(r) AICP(r+1) A+ - AICP (rg) > ICH(7) A
ICT(r+1)A---AICT (o) = minge, IC” (k), and the second inequality holds automatically, which together
show the desired result.

B.6 Proof of Theorem 4

To prove Theorem 4, we first present some technical lemmas with their proofs.

Lemma B.26. Under the assumptions of Theorem 4, it holds that

(i) maxiep,) " 354 |8 — enl? = Op(wy p);

(i) max; jery) [0 YA, By — ' Y0 engijlls = Op(wnyp);

(1) His — 3| s,max = Op(@n,p).

Proof. (i) Notice that &:(-) (") = {y1i(-) =BT f ()}~ {us()~b; ()} = (bi=Uby) h(-) =B (UTT—£) (),
where b; and b; are the i-th rows of B and ]§, respectively. Applying the inequality (a + b)? < 2(a? + b?)
and the Cauchy—Schwarz inequality yields that

1 . ~ c 0l v 0l & ~
max - 2 — el <2max B — Ubil? Y[R IP + 2max b7 Y [U'F, — £
iE€lp] N - i€[p] n/= i€[p] n=

=Op(w,217p) + Op(/\/lg/n +1/p) = Op(wip).

(i) Notice that max;ep,) Eles|? = max;epy) E § e4i(u)?du = maxepy) § Se ii(u, w)du = O(1) from Assump-
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tion 3(iv), thus we have max;e[, n I3 |ew]? = Op(1). By the Cauchy-Schwarz inequality,

n
maX H— Z Etiftj — Z etieth = max H— ati — &1i)Etj + €4iErj — gtj)H
i,5€[p t=1 i,5€[p S
1« 5\ 1/2 1 a 2\ 1/2
< max + Z [ — el +2(max = 7 fleul?) T (max = 3 & - =y)?)
ielp] M ielp] M = jelp] M

=0 ( ») T Op(@np) = Op(@np).
(iii) The result is immediately implied by part (ii) above and Lemma B.12(ii). O

Lemma B.27. Under the assumptions of Theorem /, there exist some constants ©1,05 > 0 such that

with probability approaching one,

0 < mln ||@ ’Is < max H Pls < 02
i€[pl.je i€[p].j
Proof. See the supplementary material. O

We are now ready to prove Theorem 4. By Lemmas B.26(iii) and B.27, we have Hf]e — 3| smax =
Op(@n,p) and max;je(p) [Oijs = Op(1). Consequently, for any e > 0, there exist some positive constants
N,©; and O3 such that each of events

Tl = { max E&"ij - Ee,ij

i€[p],j€[p]

HA

< anyp}, T2 = {61 < [0125 < €, allij < [o]}

hold with probability at least 1 — e. The thresholding in (10) is equivalent to Ea i = Sij (EA]E,Z-J-), where

sij(+) = sa,; (1) with \j; = Cunyp |G) ®|s and Wnp = A/logp/n + 1/,/p which is smaller than @, ,. For
C > 2NO7 Hwpp/wn, p), under the event T; N Tg, we obtain that

I£7 — s = max HZH wl\s—max i (Se.ij) — Beijlls
J elp]
p
j=1

p
~1/2 a 1/2
Glj/ HS) + rig%f]( 2 HEE,ij e ’LJHSI(HEE ij HS > Cwn,p”@ / “S)
j=1

< Helﬁx Z I5i5(Zeig) — SeislsI(1Zeijlls > Cwnpl
2

6%]1s)

+maXZ e islsT(1Eells < Cony
ielpl 7=

14
<max Z Mgl (|Z25]s > Cownp©1) + max Z NI (|8eijlls > CwnpO1) + max [ il sI(120.i5ls < Cuwn p©2)
“ i€[p] “ i€[p] 1

’LE 1

p
<(COy + N) wnpmm]( 2 (IZc5s > Nwnp) + max Z 13581 (|Ze,i5lls < (CO2 + N)wyy)
p
: 12,551
<(CO3 + N)w, S (|18, 45 Nw,
(CO2 + N)w ,pril;[aﬁjz Niwd, (H ijls > Nw ,p)

(C@Q + )1 qwl q
—— I(Hze UHS (C@2 + N)w, p)
e

—|—maXZ IZeislls
ie[p] o

<(CO, + N) {N~ 74 (COy + N) ~}a, I.I;%DXZ 15e,i5 % = @h sp,
(3 ] 1
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where the third inequality follows from C’@lwnp > 2Nwy,, and the last line follows from the fact
1—q)/2 (1—q)/2

that s, = maxepy) X7 Joily ™o 5 Zeijls = maxiey) 5y [8eil since maxge, ol =

maxe(p) § e (u, u)du = O(1) by Assumption 3(iv). Therefore, with probability at least 1 — 26 HZ}

1= w%}qsp. Considering that € > 0 can be arbitrarily small, we have the desired result

135 = Sfle < |52 - Bels1 = Opl@hylsy)-

B.7 Proof of Theorem 5

To prove Theorem 5, we first present a technical lemma with its proof.

Lemma B.28. Suppose that the assumptions of Theorem 5 hold. For the sample covariance of ?t, i.e
Zf(u v)=n"1Y1 1ft( )E.(v)", we have

*)

|£; — U U s max = Op(Me/v/n + 1/y/p).

Proof. Consider f;(u)f;(v)™ — Uf(u)f,(v)TUT = {ft — Ufy(u) }E(v)T + Uft(u){?t(v) - Uft(v)}T. Then

1 &K oan 1 & 1 & ~
SNEET - URETUT H* (£, — Uf, H* U, (f, — Uf,)"
‘ng(tt t >S,max n; b t) + n; t(t t)

S,max S,max

J RN 12 (1 ¢ A
<<nt_21 If: — Uft\|2> (n; ||ft|2>
(R D8 -O87) L D08 = Oy,

1/2

t=1

where the second inequality follows from the Cauchy—Schwarz inequality, and the last line follows from
n~tyT HE — Ufy|? = Op(M?/n + 1/p) by Theorem 1(ii), and n=t > 7| [[Uf||> = O,(1) since [U| =1
and E||f;|?> = O(1). Together with Lemma B.12(i), the desired result follows immediately. O

We are now ready to prove Theorem 5. Consider that
BX,B" - BXB" = BUTUEfUTUBT — BY;B"
—BU"(UX,;U" — £;)UB" + (BU" — B)X;UB" + BX,(UB" — B").
Then we have

|IBE/BT — BE ;B ||s max

<|BU"|»|UX;U" — I1 +2|BU” — Blloo(JUE ;U5 max + [UE,UT — )IBU" o
<rPC?|US UT — 4 s max + 2r72C(rCax + [UD,UT — )|BU™ — Bllmax
:OID(/\/IS/\/E +1/4/p) + Op(@np) = Op(@nyp),

(B.4)

where the first inequality follows from Lemma A.9(i), the second inequality follows from |BUT|, <
|BU | max < 7|Blmax| Ul < 7¥2C provided that Ul < 7|U|| = v/, [BUT — B|y < r|BUT —
B/ max and |UZ ;U smax < Crmax|U||% < rCrax in Lemma B.17(i), and the last line follows from Lemma
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B.28 and |BU™ — ]ABHmaX = Op(wn,p) in Theorem 1(i). Then note that

A~ A A~ A A~
|Ze = Zellsmax <|E: — %

m(\\éifusm + Op(@np) = Op(@np),

where the last line follows from Lemma B.26(iii), the choice of A = C(y/log p/n + A/1/p) < @n.p, and the
fact max; je[p) \\@1/2\\3 = Op(1) by Lemma B.27. By combining (5), (12), and (B.4), we obtain the desired

result.
B.8 Proof of Theorem 6

For the sake of brevity, in this section, we suppose that the orthogonal matrix U in Theorem 1 and
Lemmas B.23-B.28 is an identity matrix, which means, when we perform eigen-decomposition on ﬁ, we

can always select the correct direction of Ej to ensure EJTBJ > 0. The proofs of Theorems 4 and 5 Verify that

the choice of U does not affect the theoretical results. In this section, (E )T Ef and {Ef + BT( )TB}T
are defined in a similar way to the inverse in Lemma B.15 associated with 3., ¥, and E} + BTElB,

respectively. To prove Theorem 6, we first present some technical lemmas with their proofs.

Lemma B.29. Under the assumptions of Theorem 6, then, ﬁA has a bounded Moore—Penrose inverse

with probability approaching one, and || T — ETHg =0 (wnp Sp)-

Proof. Provided that wng,qsp = o(1) and HEEH £ < c3 for some constant c3 > 0, we combine Lemma
B.15 and Theorem 4 to yield that H(f];)TH £ < 2c3 with probability approaching one, and thus f]; has
a bounded Moore—Penrose inverse with probability approaching one together with the desired result
H T — ET”g =0 (wn,p Sp)- O

Lemma B.30. Under the assumptions of Theorem 6,
~ AA g _
IBT(22)'B — B"SIB|z = Op(pwy,7sp) = 0p(p).
Proof. Consider
A~ ~ A A~ ~ A ~ A
|B"(22)B — B"=IB| . <2|(B - B)"(X0)'B| ¢ + |BT{(X0)" - =[}B|.
~ ~ A A

<2|B - BJ(ZD)"[IB] + BI*I(Z)" — =l ¢

=0p(pwn,p) + Op(pw pqsp) = Op(pw}z;qsﬁ = op(p),
where the last line follows from Lemmas B.23 and B.29. O]

Lemma B.31. Under the assumptions of Theorem 6,

(i) (=} + B*={B) TH[: - (p—l)-

(i) H{zf + B TB}THL = 0,(p7Y).

Proof. (i) Note that H(ET + BTETB)THI; < |B™EIB)|; < Anin(B™B)} Xz = O(p~ 1), where the

first inequality follows from the fact 3 is a Mercer’s kernel.

(ii) Since HszL < ¢4 and HZf - EfH,; = (wn,p) = 0p(1), by Lemma B.15, we have HEf }Hﬁ =
Op(wnp). Thus, by Lemma B.30 H{Ef +B*(Z TB} {ZT + BTETB}Hﬁ = 0p(p). Combining Lemma
B.15 and part (i), we obtain that H{Zf + BT( TB}THL = Op(p7Y). O
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We are now ready to prove Theorem 6. Using the functional version of the Sherman—Morrison—
Woodbury formula, we have ||(3 )T — ETHE S, Ly, where

Ly :” AA T* ETHL’
Ly =[{(%2)'B - ETB}{Ef +BY(S TB}TBT e
Ls _HETB{Ef + B &) BY (B (E) - B =],

Ly =|SIB[{S] + BT & BY - {zT +BT2TB} 1B,

Clearly, Ly = Op(wiy%sp) by Lemma B.29. Then, note that |(£7)'B — =IB|, < |(E0)T — =l 2|B| +
I=f2|B - B| = Op(\/f)w}l;; sp). From Lemma B.31, we obtain that Ly = L3 = O/p(wyllqusp). Lastly,
since [|(Z} + BSIB) = 0(p~!) and [{£} + B*(S2)' B} — (S} + B'SIB}|c = 0, (pwis’sy) = 0p(p).
we apply Lemma B.15 to obtain that

H{Ef 4 BT( )TB}T _ {ZT + BTZTB}TH p72)0 (pwrllpqsp) Op(p~ 1W711pq3p)

which implies that Ly = O (w,lqusp) Combining the above results, f)D has a bounded Moore-Penrose

inverse with probability approaching one, and H T —>f H L= = Op( wn,p sp).
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Supplementary Material to “Factor-guided estimation of large covariance matrix
function with conditional functional sparsity”

Dong Li, Xinghao Qiao and Zihan Wang

This supplementary material contains the proofs of the technical lemmas in the appendix in Section S.1,
and the remaining technical proofs in Sections S.2-S.3, further derivations in Section S.5, additional

simulation results in Section S.6 and additional real data result in Section S.7.

S.1 Proofs of theoretical lemmas in the appendix
S.1.1  Proof of Lemma A.5
(i) Note that §§K(u,v)K(u,v)"dudv = {32 A2¢;(u)¢;(u)"du, and thus

i=1"%

tr{ fJK(u, v)K(u, v)Tdudv} = tr{ i A2 J(bl(u)TqbZ(u)du} = i A2,
i—1 i=1

The equality tr {§§K(u,v)K(u,v)"dudv} = [K|gp can be verified by simple calculation. The first
equality can be obtained by K(u,v)T = K" (v, u) and the multiplication of kernel functions.

(ii) Similarly,

[ [ o o] =] | ) 22 (0)i ()" du| = ] | 316 "}

:)\maX{AQJ‘I)(u)‘I’(u)Tdu} - AmaX{A2 J @(u)T‘I’(u)du}
:)\max(AZ) = A% = HKH%a
where A = diag(A1, A2, ...), ®() = {d:("), d(*), ...}, and the fact that the 00 x 00 matrix § ®(u)"®(u)du
shares the same nonzero eigenvalues with the p x p matrix § ®(u)®(u)"du, which can be obtained following

the proof of Proposition 2 in Bathia et al. (2010).
(iii) The equality holds by the definition of trace norm.

S.1.2 Proof of Lemma A.6
(i) Note that

‘ffK(u,v)G(u, U)Tdude —Ijga[ﬁzp: JJ Z K (u,v)Gji(u, v)dudv

p P
max > > | Kils|Gels

el 2 A (S.1)
D p
\(%; IKils ) (mas 3 16
|S,oo-




(ii) By similar arguments, we obtain that

Gls,1- (5:2)

H JJK(% v)G(u, U)TdudeOO < |K

(iii) The inequality follows immediately from (S.1), (S.2), the matrix norm inequality |A[? < [|Ax|A|:
for any p x p matrix A and the choice of A = §{K(u,v)G(u,v)"dudv.
(iv) An application of Holder’s inequality yields the result.

S.1.3 Proof of Lemma A.7
(i) By Lemma B.14 or Theorem 4.2.5 in Hsing and Eubank (2015), we have

~ / >1/2 N
|52, —maxM — max <2 iaite X)}> (% 3(x))

xeHP x| xeHP H > 1/2 H [x]?

o GEe) xS

yeiir  |y|2  xedr  ||x|2 = %]z - 1%

=1 "%

(ii) By Lemma A5, ||z = M\ and [Z|lp = 4/X,=1 A2, where {)\;}2; are the eigenvalues of ¥ in a
descending order. Apparently, ||, < |X|sr holds.
(iii) By Lemmas A.5(ii) and A.6(iii), [ ]2 = | § § 2(u, v)B(u, v)"dudv| < |E]s,1|Z]s,00. Furthermore, if

12i5lls = [IX;ills for all 4, j € [p], we have |X|s1 = and thus ||z < |X|s,1 holds.

S.1.4 Proof of Lemma A.8

(i) Note that

tr{ fKG(u,u)du} =tr{ JfK(u v)G(v,u)dudv} - fftr{K(u, )G (v, u)}dudv
:tr{ JJG(v,u)K(U,u)dvdu} - tr{JGK(v,v)dv}.

(ii) Suppose that K(u,v) = Z?L Aig;(u)p;(v)" and G(u,v) = Z(;.Ozl ijj(u)zpj(v)T where {¢;(-)} and
{1;(")} are both orthonormal basis functions. Then, we have

tr{fKG(u, u)du} =tr{JJK(u,v)G(v,u)dudv}

= Az j ¢2 1/) '¢ ¢z
;j_l WJJ j J j

:Z Z 7fw] <¢27'¢']>’ ZAW?
i=1j=1

N
TR

max)\>

S w; = K[| Gl = [K]ctr j G(u,u)du).
Jj=1



where the first inequality follows by using similar arguments to prove von Neumann’s trace inequality
(see Carlsson, 2021).

(iii) From Lemma A.5(i) and the part (ii) above, we have

IKG|% p =tr{ fKGGTKT(u, u)du} - tr{ fKTKGGT(u, u)du}

<IKK et [ GG (u,u)du} = K2

which implies the desired result.
S.1.5 Proof of Lemma A.9

(i) It follows that

q
= max H ALK, H < max Al | Kkils
elp] ela Z ik kj ielp] jela] kz_ll ‘ Zk‘ H kj H

g Az . K = A K max-
(i{i&’f;' fl) - |8 K.
Further,
[KA™ =[(KAT) = A
= Ale|K =

(ii) It follows that
P q q q q
IAKEr = )| ) ki < 21 (245 3 15l3)
i=1j=1

k=1 1=175=1 k=1 k=
p q q q p q q q
513 (3 3 himt) - (3 348 ) (53
i=lj=1 k=1i=1 i=1k=1 I=1j=1

=|Alr[Kls,F,

<.
—_

N——

where the inequality follows from the Cauchy—Schwarz inequality. Furthermore,

IK

= [(KAT)"|sp = A

r < |Alp[K]sF = [K|sr|A]r.

(iii) & (iv) It follows that
JAKIs . =max 3 S AKigls = max S ) Al Kl
L | ©lrl (20

< max Z Z | Ak max | K i|ls
lp] o 1] 1

=gy 2 140y 2 1) = 1 K



Furthermore,
|IKA™

s1=|AK"|sx

< Aol

The other two arguments can be proved similarly.

S.1.6 Proof of Lemma A.10

(i) By the definition, it follows that

jaf] = { [ arantoad” < { [ru@ @ 50} = 1] o

(ii) By the Cauchy—Schwarz inequality,

s =[ [ firstopana] < [ [13 rso o]
<{ fjéfj(u)Qégj(U)2dudv} V2 _ {jf(“)Tf(“)dUfg(v)Tg(v)dv}l/z

=] - lel-

S.1.7 Proof of Lemma A.11

Let q;(-) for j € [r] be the columns of Q(-). By Assumption 1', we know that {§;,q,) = pdil(i = j),
which implies that &;(-) = (p9;)~"/2¢,(-). Then, for j € [r],

j (@AW a1 = 330G &) = 250,

which indicates that pi; is the eigenvalue of Q(-)Q(-)™ with the corresponding eigenfunction q;(-). Since
(q4i,q;) = I(i = j) for 4,7 € [r], we can expand {q;(-)}e[,] into a set of orthonormal basis functions in
HP, denoted as {q;(-)}}Z;. Considering that (q;,dy) = 0 for any j < r and k > r + 1, we obtain that

§{Q(w)Q(v)"}qx(v)dv = 0 for k = r + 1. Thus, the rest eigenvalues of Q(-)Q(-)" are zero.
S.1.8 Proof of Lemma B.12

(1)&(ii) See Theorem 2 and equations (2.15) in Fang et al. (2022) for the corresponding proofs.
(iii) The autocovariance matrix functions of {y;(-) };cz at lag h satisfy Eéh)(-, ) = BZSCh)(-, -)BT—l—Egh)(-, ),

and the corresponding spectral density matrix function at frequency 6 € [—7, 7] is given by

f,0 = Z E exp —ihf) = — Z BE B" exp(—ih0) + — Z 2 exp( ih9) = Bf;gB" +f. g.
heZ heZ heZ



By definition, the functional stability measure of {y(:)}swez is

) ($,£,0(0))
M .60

(¢
—97 -  esssup SSd’(U)Tfye u, v)@(v)dudv
Oe[—m,m],peHb SSd)(u)T ) ( )dudv
(u)
(u)

§So(u TBffg u, v)BT¢(v)dudv §§p(w)” ,v)(v)dudv

S2m eisfuj,’er ({6(w)™BE ;(u, 0)BTé(v)dudv 27 eisfufer [ (u)T )d)(v)dudv
| EL0€) (Buasl)
iy 717 S IR0 SH P55

X./\/lf + Ms = Mg.
The other conditions imposed by Fang et al. (2022) for {y.(-)}+z can be easily verified. Then the desired
results can be obtained immediately by combining the above results.
S.1.9 Proof of Lemma B.15
(i) Notice that (x, K(x)) = § { x(u)"K(u, v)x(v)dudv. Then for any x € HP with |x| = 1, we have

UJ V(K (u, v) — G (u, o) }x(v)dudo| < [x]2 - [K = G|z = op(c:)

Thus, for a sufficiently large n, (x, K(x)) = (x, G(x)) — ¢,;}/2 > ¢,;1/2 for any x € Ker(G)* and |x| = 1
with probability approaching one, since (x, G(x)) > (HGTHg)_l > ¢, ! by using Lemma B.14. Hence, by
the definition of KT, it follows that |KT||; < 2¢, with probability approaching one.

(ii) Notice that

K — G|, = max x, KT (x — Glx)) = max x,KTG—K Gi(x
H H erm(G),HxH=1< ( ) ( )> erm(G‘r),Hx”:l< ( ) ( )>
<|GT . - max KI(G-K <K — Glz|GT||z - max z, K (z
IG"| yeKer( )i,||yH=1<y ( )y <| |G el (G)7HZH=1< (z))

<|K'|z|K ~ G| Gl = Op(c) 1K — G,

where the last equality follows from part (i).
S.1.10 Proof of Lemma B.16

The proofs of this lemma utilize the tail probabilities of sub-Gaussian process as presented in Section S.5.3.
(i) Notice that {f;(-)} and {e(-)} follow the sub-Gaussian functional linear process (see Section S.5.3) by
Assumption 4, with E|f;|2 = O(1) and E|p~V/?B"¢|?> = O(1) by Assumption 3(ii). By Bonferroni’s
method, it yields that, for each j € [r] and any given n > 0,

IP){?61[2}3]((||ftj|2 EHft]” } ZP ||ft]H2 E|fi|* = n) < 2n exp{—cmin(n?,n)}, (S.3)

where ¢ > 0 is some constant and the second inequality follows from Lemma 5 of Fang et al. (2022).

Letting 1 = logn, (S.3) shows that maxep, [f;|* = Op(logn) + E||f;|?, which implies that maxep,, [f:] =



Op(+v/logn). For the second argument, to satisfy Condition 10 in Fang et al. (2022) and apply their

Lemma 5, alternatively we consider that, for each j € [r] and any given n > 0,

P {rtg% (p~|bfe:)® —p'E[ble?) > 77} < 2nexp{—cmin(n?,n)},

which implies that maxe,) [p~ 12B%¢,| = O,(y/logn). Given that E[p~'/2e,|?> = O(1) by Assump-

tion 3(iv), we can also show that maxe(,,) [lp~ 12¢)| = O,(+/Togn) similarly
(ii) The three arguments maxe[,) [v:| = Op(v/logn), maxep, lp~ 12§ Q(u) e (u)du| = Op(+/logn) and
maXye[n] [P~ 1V20es,ep) — Eley, st/>}|2 = Op(logn) for t € [n] can be proved Slmllarly to part (i), since

{~,} and {e¢(-)} are sub-Gaussian (functional) linear processes by Assumption 4', with moment condi-
tions Elly,|* = O(1),Elp~"2 §Q(u)"er(u)dul* = O(1) and Elp~"*{(er,er) — Eer,ep)}|* = O(1) by
Assumption 3'(ii).

S.1.11 Proof of Lemma B.17

(i) In Assumption 1, we assume that

JJZf(u, 0) X ¢ (u,v) dudv = diag(bs, ..., 0.),

ie.,
ff Z Y145 (u,v)2dudv = 6;, for i e [r].
j=1

Then we have

= max Hzf,zj !5 = maX szf” u,v) dudv maxjfz: 1.5 (u,v) dudv = max0; = 61,
i€[r].jel rl.j€lr i€(r]

which implies that |2 s max < 0%/2 = Chax-
(ii) Note that X ¢(u,v) € R"™*", we have max(||X¢|s,00,

S.1.12 Proof of Lemma B.18
(i) By Lemma A.9(i) and the fact ||

1/2
IZ51s7) < 7IE 7] smax < 701 = Cop.

< |X2e|z, we have

HEyHS,max :”BEJ”BT
<|Bllooll

< 12C?Chax + O(1) =

(ii) By Lemma A.9(iii), we have

13y lls,

<|

5.0 < TpC*Cop + 5 < p.

Part (iii) can be proved similarly.



S.1.13 Proof of Lemma B.19

For the first part of the lemma, notice that |Qz] < [Qz[p < +/7|2z| where r is the rank of Q. so
192.] = |22, and

2
92l = |58 [ [%5(00)2 007 duton”

= p4tI' (dlag{QL SRR QT}diag{elv s 797"}T) = p4 2 07,2 = p47

where the second equality follows from Assumption 1 that {§3/(u,v)E;(u,v)"dudv = diag{f,...,0,}
and B"B = pI,. Thus we have ||Q| = p?. For the second part, we have

1R[] < HJ J 3. (u, )3 (u, v) " dudv

+ HJ f BX ¢ (u,v)B"X.(u,v)"dudv

+ Hffge(u,v)BZf(u,v)TBTdudv

<[Ze)Zz + 2IBEsB|2]B: 2 = Op),

where the second inequality follows from Lemmas A.5(ii) and A.6(iv), and the last line follows from
Assumption 3(iii) and Lemmas A.7(i)(ii) and B.17(ii).

S.1.14 Proof of Lemma B.20

Notice that
90e | [ [ 2Bt o) dua]

+ H JJBEf(u, )BT, (u, U)Tdudeoo + H jJEE(u, v)BX ¢ (u, U)TBTdudUHOO

<%

Sw|Bels1 +2|BE B 5,00/ 2e]s1
|5,1IBloc B |0 3|

<82+ 2rC%Cospp < 52+ psp < psp = o(p?),

<[>

S,00)Bells + 2|2 S0

where the second inequality follows from Lemma A.6(ii), the third inequality follows from Lemma A.9(iii),

and the fourth inequality follows from Lemma B.17.

S.1.15 Proof of Lemma B.23

By Proposition 1(ii) and Lemma B.19, if 5;1;] > 0, then
1€; = bl = Op(p~2[Qx]) = Op(p™"), for j € [r]. (S.4)
Applying Lemma A.2 yields that, if EJTS ; = 0, we have

| - Q|/v2

min (|5\j71 — )\j’, ’)\j - 5\j+1

1€, — &1 < (S.5)

where {5\J }§:1 are the eigenvalues of € in a descending order, and {Ej }1;:1 are their corresponding eigen-
vectors. Then, for j € [r], we have [\j_1 —Aj| = |[X\j_1 — \j| —|\; = Aj|, where the first term |A;_; — ;| = p?




with probability approaching one by Lemma B.22, and the second term |A; — 5\J| = 0,(p?) by Lemmas A.1
and B.21(i). Hence, |;\j_1 — Aj| = p? with probability approaching one for all j € [r]. We can also show
the similar result for [Xj — Ajq| if j € [r—1]. I j = 7 A — A1 > Ar — As1 = p20r — Apy1 2 P2
since Ay = 0p(p?), which can be implied by Proposition 1 and Lemma B.19 that A\,.1 = o(p?), and
Lemmas A.1 and B.21(i) that [A,41 — Ary1]| = 0p(p?). Thus,

min(!j\j_l Al 1A — ]+1|) > p°.
Applying (S.5), Lemma B.21(i) and the above argument, we have, if E]T-Ej = 0, then

ng — & = Op(M- \/1/77&) for j e[

Combining with (S.4) we have, if EJTEJ > 0, then

1€; — bj| = Op(Mern/L/n + 1/p), for j € [r].

Since Bj = \/ﬁgj and b; = \/;T)lN)j, one can obtain that there exists an orthogonal matrix U € R"*" such
that

B - BU" | = O, (Men/p/n + 1//p).
where the matrix U is used to adjust the direction so that each bJT-lA)j > 0 for j € [r].
S.1.16 Proof of Lemma B.27

We first prove the upper bound. By the definition of @ij, we have

B 0) = D) {uwas(0) — 1 Y iy ()}
t=1 s=1
2 (. 2 1 & R 2
<= t; {Eu()ay(®) = Segilu,0)} + 2 mas {Seis(wo) - = ; Ea(w)Ey ()]

which implies that
n
18172 = f f 6,5 (u, v)dudv < f j S ()85 () — Se (1, 0))? dudw + 2|5z — Sel3
t=1

:% JJ; {é\ti(U)é\tj(U) - Zs,ij(uav)}2dUdU + 0p(1),



where the last line follows from Lemma B.26. Moreover

i { — Zaij(u,v)r

t=1

Z[{sm — eu(w)}a () + eulu ){aj(v)—etj(v)}+5ti(u)gtj(v)—zs,ij(u,v)]z
t=1

//\

Z —ei(u) 8 (0)? + 4 Y eri(w)? {81 (v) — e (0)} + 2 2 {eri(u)er; (v) = Seij(u, v)}°
t=1 t=1

<4 max {Em sm-(u)}2 max [Zn] 2{&;(v) — & (v } + 3ey; (v ] +2 Z {eri(w)erj(v) — Xeij(u, fu)}z.

i€[p].te[n] jell L3
Here, we bound each term above as follows: (a) by Corollary 1, we have maxle[p] n] IE6 — eul® =
Op(0*) = 0p(1) under Assumption 6; (b) by Lemma B.26(i), we have max;c Zt 1 |2 — el =
Op(ws ) = 0p(1); (c ) by Lemma B.12(ii) and Assumption 3(iv), we have maxep,yn= " Y0 [ey]? <

op(1) + maxepy) § Xe jj(u, u)du = Op(1). Combining these results yields that

2
H@1/2HS < ffE {eri(w)er;(v) — Beij(u,v)} dudv + op(1).
Similar arguments as those in the proof of Lemma 2 of Cai and Liu (2011) results in

ma)ec H— Etiz’-:tj — Egvij)Q — Val“(f?tz‘f?tj)HS = op(1).
7-]

Combining with Assumption 5 implies that max;ep, jep) [0 2 (erigr; — Ee,ij)QHS is bounded away
from both zero and infinity with probability approaching one. Therefore, max; je(, H Hg is bounded
away from infinity with probability approaching one.

We next prove the lower bound. Notice that

13 feutwey )~ Bt} < 2{% STDRENUENOINEES 3 CHNENOIES JERMENT)S

which implies that

1 - A ~
. f f > {eri(ules (v) — Be o dudv f f Z i (u)ers (v) — i u)By; (0)Pdudo + 41021 + 0,(1),
t=1

where the LHS is bounded away from both zero and infinity uniformly in ¢, j. Then,

Z {€ti(u)€t]’ (U) - é\tz( é‘tj } <2 Z 8151 {8t]’ (’U) - Etj } + 2 Z 8t] {8151 — 5“ }2
t=1 t=1 t=1
<4 [I;]létié( {Etz Etz } ma t:Z:l [ 5t] — Etj (’L))}Z + Etj (U)Q].



As demonstrated in the proof of the upper bound above, we have

- JZ {eu (e (0) — Ealw)iy(v)2dudo = o,(1)

Hence, mine[y H HS is bounded away from zero with probability approaching one.

S.2 Proofs of theoretical results in Section 3

S.2.1 Technical lemmas and their proofs

Lemma S.1. Under Assumptions 3'(iv) and J', we have that,

(i) for any i, j € [r], |n"" 2y ey — Baisl = Op(1/v/n), In™ X1 v¥E — By fmax = Op(1/v/n);

(“) fOT any iaj € [p]a Hn_1 Z?:l 5ti5tj_25,ij”3 = Op(ME/\/ﬁ); Hn_l Z?:l Eteg_EEHS,max = Op(Ms’\/ Ing/n);
(idi) for any i € [p], j € [r], [n " 30 ; el = Op(Me/v/n), maxicpy) jer) 0" 2021 €| = Op(Men/logp/n).

Proof. For parts (i) and (ii), see Theorem 2 and equations (2.15) in Fang et al. (2022) for the corresponding
proofs. For part (iii), see Remark 3 and equation (2.16) in Fang et al. (2022) for a proof. O

S.2.2 Proof of Theorem 1'

To prove Theorem 1', we first present some technical lemmas with their proofs.

Lemma S.2. Under Assumption 4', it holds that

2 |Eey
max MzO(ME), and max

wefn] S P v te[n]

|E<€t'7 €t>| _ O(Mg)

Proof. From Assumption 4', the functional stability measure of {&;(-)}scz is bounded (M. < ), and we
would like to associate it with the equation of interest in this lemma. Since {&:(-)}ez is stationary, we

have, uniformly in n,

1
— < - Elep,, 4 < Eley;, €
. Itg[aif](pZ 1\ (evir i)l grel[aﬂrelaxtzl\ (evi el

-
1S
—
<.
Il
—_
X
I

<max i ‘IE f ers(u)eps (u)du

1/2
< max { Jsh u)ep;( fsli(v)st/i(v)dv}
< i 15 d d
IZIelaX P Z J fel w)ey; udv

“mas 3] j | 10T = 0 (0, 0)5 (0)dudo

2 (oo () < 2 SO0
i€[p

(¢ Ze(P;))
<27TwG - esssup . fe0(@)) _ = wgM, = O(M.,),

Oc[—m,x] d)er <¢? ( )>

10



where ¢;(-) = (0,...,1,...)" with its i-th element being 1 and the rest being 0, H&s = {¢p € HP :
(¢, 2.(¢p)) € (0,00)}, f. ¢ is the spectral density matrix function of {e¢(-)}cz defined in Section 3.1, and
w§ = maxepp) § X jj(u, u)du. Furthermore, we also obtain that

e |E<€t’a€t>\ Z |Eev el _ oM.
t' te[n] p t’ 1 p

O

Recall the definition of the asymptotically orthogonal matrix H introduced in Section 3.2. Applying
the equation (C.2) in Fan et al. (2013) or (A.1) in Bai (2003), we have

V—llnAIEs/r-: 14 =
—H~, = (;) {ﬁ Z Yv e er) t> ﬁ Z VerGe + — Z Yot + — Z ’Yt/ft't} (S.6)
=1 /=1 ] 7]

where

1 1 1 . v 1 v
Gt = 2;<5t’75t> - 5E<€t’75t>7 Nt = Z;’Y; 2 JQi(u)gti(U)dua it = 5’)’? 2 qu(u)gt’i<u)du
i=1 =1

Lemma S.3. Under the assumptions of Theorem 1', it holds that
(i) maxepn [(np) " Xh_y AEler, e = Op(Me/y/n);

(i) MmaXse[n Hn ! Zt' 1 Yo Coel = (\/ logn/p);

(iii) maxepy) [0~ lzt/ 1 Yol = Op(v/logn/p);

(iv) maXie(n Hn Zt/:1 Yeéut| = Op(+/logn/p).

Proof. (i) By the Cauchy-Schwarz inequality and the fact that n=1 31" | |9,]? = O,(1),

1 ¢ 1 & (Edey, e 2 i
~ 12 t/y et
- Zl e, 0] <max [n PP (= ]

max
te[n] p
1 (B M2 V2
€y, EL
< 1 — _—
Ol >m[][Z{ ; }]
E(st/,€t> 1/2 E<etr Et)

<Op(1) max,

:OP(ME/\/ﬁ)a

1n
tn{’l’LlZ

3

b

where the last equality follows from Lemma S.2.
(ii) By the Cauchy—Schwarz inequality and the fact that n=1 31" | |9,]? = O,(1),

max Hf Z o Cort <rnaxf( Z 152 Z Ct’t) = Op(1 )(max i Czt) -

= te[n] n A=

1
1 n 1 1 5 1/2
0,0 et 35 (Leveo - Loter.eo)’| - ovioaan

11



where the last equality follows from Lemma B.16(ii).

(iii) By the Cauchy-Schwarz inequality and the fact that [n=' >0 _; 4,75 | = Op(1),

Z Yovi = Z fqz w)eri(u

t’l

w13 3000

t’l

max

= Op(\/logn/p),

\

where the last equality follows from Lemma B.16(ii).
(iv) By Assumption 3'(ii), we can show that |[(np)~' >0, >, §aqi(w)ey;(w)duyy | = Op(1/y/p). Addi-
tionally, maxc(n) |7:] = Op(v/logn) by Lemma B.16(ii). The desired result follows immediately that

Z Yoéet| < max H’YtHH* Z Z JQz w)ey;(u)duyy

max

= 0,(v/log n/p).

O]

Lemma S.4. Denote 4, = (Y41, ---,9r)". Under the assumptions of Theorem 1', it holds that, fori € [r],
(i) n= ' 20 [(np) 71 20— AwiEer, e0)]? = Op(ME/n);

(i) n=t 3 (7 30 AviCen)? = Op(1/p);

(ii1) n=t 3 (n 7 0 Avined)? = Op(1/p);

(iv) n= ' 30 (07 X0 Avi€e)? = Op(1/p).

Proof. (i) By the Cauchy-Schwarz inequality and the fact that Y.;_, 2, = n

2
I (1xh . Eeren) 1150 o)1 v (Eeven)’
n (ngjﬁ‘;> S PIHODEDY <>

t'=1 p

|
LSS (KLt § (e

t=1"¢=1 t'=1
Edey 1 W |Eey
< ma Ev &0 max — Z Eeven| _ O(M?2/n),
t/ te[n] p te[n] N 1 P
where the last equality follows from Lemma S.2.
(ii) By the Cauchy-Schwarz inequality and the fact that Y.;_; 2, = n
l y ’Yt/th’t =i3 NeriVii y Gt
n n
i=1 "M # 1e[n] t=1
R 1/2
{ Z ’Yt%ﬂlzz Z (Z Gt lt) }
t'le[n t'le[n
1 & 1/2 1 " 271/2
<3 Z i { Z (ZCt'tClt) } = ﬁ{ Z (ZCt'tClt) } :
=1 tie[n] t=1 tie[n] t=1

Notice that E{ Zt/,le[n] (Z?:l Ct'tClt)2} = nQE(Zt 1 Ct’tClt) n* maxy it E’Ct’t‘ and by Assumption 3'(ii)
we have maxy ; E|¢y|* = O(1/p?), which yields the desired result by using Chebyshev’s inequality.

12



(iii) By the Cauchy—Schwarz inequality, and the facts that >, 32, =n and n=1 35 _, v+ [? = Ox(1),
1 < 1 & 21 G|l w 2
EDN EDILT NS EDIE IEDY DI EOENOY
t=1 t'=1 t'=1 t=1""j=1
1 & L1 I &< 2
<(- 2 i 2 lvel?) D) H 2 (W) (u)du
o 5515 [t

nptl

Notice E| 330_; §qj(u)erj(u)dul* = O(p) by Assumption 3'(ii), which implies n"E[} 7, || 37_; §q;(u)erj(u)dul?] =

O(p) and yields the result.
(iv) By the Cauchy-Schwarz inequality, and the facts that >,_; 32, = n and n™' 25 _; [y [? = Op(1)

n n n p
%Z ( Z %/zﬁt't) <( Z v )Hni Z Z JQJ( Jew;(u dUH
t=1 " ¢'=1 =1 =1
1 n 1 TJZ p
<0, (3 X 3) 2z 21| X [ astwersad” = o,m).
/=1 =1 j=1
where the result in the last equality has been obtained in part (iii). O

Lemma S.5. Let {7;};_; be the first v largest eigenvalues of ﬁj(, -) in a descending order. Under the
assumptions of Theorem 1', it holds that 7, = p with probability approaching one.

Proof. By Proposition 2, we obtain that

Tr = ”pﬂrHQ — |7 —pUr| 2 p—sp = .

To show 7, 2 p with probability approaching one, it suffices to show that |7, — 7| = 0,(p). By applying

Lemma A.3 again, we only need to show Hﬁj —3,|sF = 0p(p). Note that

15 -2, =2 D@+ 2@y + ) - Q@7 -
t=1

1 n
H ﬁZ’Yt’)’t —I
t=1

ety ver
t=1

“lsF
+ H— Eetet -3

F * H(ﬁ Z Etﬂy;r)QT SF

S,F

n /
<Hn—12m§— - 1QQ7|s (ZZ [n~ 12%% e,z-j}li)”
— i=1j5=1
Lo Y3t Eetm]n) Vpmax fail

i=1j5=1

=0p(p/v/n) + Op(pPMer/1/1) + Op(pMer/1/n) = 0y(p)

where the second inequality follows from Lemma A.9(ii), the fact |K|sr < p|

(.7 ) c
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HP @ HP, and the Cauchy—Schwarz inequality. The last line of the above equation follows from Lemma
S.1, M2 = o(n), and the fact

p /4 1/2
Q" Isr = [ 1) X [ fautway(e)dudo] < pmaxail® < .
i=1j=1 v

Therefore, we have obtained that 7, = p with probability approaching one. ]

Lemma S.6. Under the assumptions of Theorem 1', it holds that
(i) [H] = 0,(1);

(it) HH" = L. + Op(Mc/v/n + 1/4/p);

(iii) H'H = I, + Op(Mc/\/n +1//D).

Proof. (i) By Lemma S.5, [V = 771 = O,(p~!). Also, IT| = )\llqu(f‘Tf‘) = )\llqu(nlr) = 4/n from
the normalization (A.1), and |T'|| = )\rln/gx(I‘TF) = )\rlrgx(z;;l'yt'yf) = Op(y/n) by Lemma S.1(i). In
addition, | §Q(u)"Q(u)du| = O(p). By the definition of H, i.e., H = n_lV_lf‘TI‘SQ(u)TQ(u)du, we
have [|H|| = Op,(1), which is also satisfied for [H|p since H € R"™*".

(ii) Notice that

1 n
[HH" — L | < [HH" - — 3 Hy,7/H" (8.7)
t=1

1 n
+ H— H~,~ H — 1
- o ; YV r

F'

In (S.7), the first term can be bound by |[HH® —n~1>7" | Hy,AFHT |p < |[H|Z|L —n Y0 v vTlr =
Op(1/4/n) by Lemma S.1(i). The second term can be bounded by

F F

1 ¢ 1 ¢ 1 ¢
H* Y Hy~H -1, :H, Y HYAH - = Y AA]
n n n
t=1 t=1 t=1
1 n
<= Yy, -3y E"
t=1
1 ¢ 2l e 12 1 ¢ il o g2) V2
<(5 DIy =72 M HYR) T (Y Iy, - 2 Y )
mia "ia " iz

t=1
=0p(Mc/vn +1/y/p),

1 n
+ H* o~ o7 _ THT
- n t§:17t(7t i ) F

where the third line follows from Cauchy-Schwarz inequality, and the last line follows from Theorem 1'(i)
and the fact n=t >0 | [F4]> = Op(1).
(iii) From part (ii), we have HH" = I + Op(M_.//n + 1/,/p) and |[H| = Op(1). Therefore

HH'H = H + O,(M./vn + 1/y/p).

Also, [H™| < [H| + 0,(1)|H™"||, which implies that [H™"| = Op(1). Multiplying the LHS of the above
by H™! yields that H"H = I + O, (M./y/n + 1/,/p). -

We are now ready to prove Theorem 1'.

(i) By Lemma S.5, the diagonal elements of V /p = diag(71/p, ..., 7:/p) are bounded away from 0. By the
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inequality (a + b+ c + d)? < 4(a® + b + ¢® + d?), equation (S.6) and Lemma S.4, we have

malzn: _H 2< 1Z<12A E<€t/,€t>>2+ 1i< Z C)
X — < max — — / maxf 15 Q!
ie[r] n = 7t ! ie[r] ntzl nt,:I'Ytz p n =1 = 1’%1 "
1 & 2 1 &1 2
+ Illelfi;X - Z (n Z ’Yt/Mt/t) + mﬁ(; Z (5 Z ’Yt'zft’t)
t=1 t'=1 t=1 t'=1

The desired result immediately follows that

1 e .
= Z 17, — Hv,|? < <rmax- DA —Hy)? = 0y (M2/n+1/p).
t=1

(ii) Note ||(V/p)~| = O(1). Applying the inequality (a + b+ ¢ + d)? < 4(a® + b? + ¢® + d?), equation
(S.6) and Lemma S.3, we have

Z ’)’t/E<€tl €t>H + max H* 2 ﬂYt’Ct’t

np =
Z Yokt

ma |3, — Fy,| < ma |
te[n]

+ max

+ maX H* 2 Yyt
=0p( Ms/\/ﬁ—i- V1ogp/n).
(iii) Using the facts that q;(-) = n 1 21 i ()7, and v (-) = qi(-)Tv; + 4i(+), we have, for i € [p]

Hy, {yi(-) — ()™, + eu)} — Hai()

i ~ oy + H (- vaf Hail).

3\'—‘

qi(-) — Ha; (")
(S.8)

3\'—‘
§\~ ||M:

n
2
z
Z ’Ytgtz

3\’*

The first term in (S.8) can be bounded by

g 5 L 0 7).

max H — Z HAy,e4| <

where the inequality follows from Lemma A.10(i), and the last equality follows from Lemmas S.1(iii) and

S.6(i). For the second term, since ¥, ;; = qf 3,q; + X ;i with maxep,) [qif = O(1) and [|Zc||s max <

IZcllz = O(1) by Assumption 3'(i)(iii), we have maxe[,) [Xy.ills = maxie[p]EHytiHQ = O(1), and thus

maXie[y] n~t3T | |yil? = Op(1) by Chebyshev’s inequality. Using the Cauchy—Schwarz inequality in the

second term of (S.8), we obtain that

maXH*Zym ~ )| < (£ Zuymu) (35— ) = 0, (M 1),
t=1

In addition, [H| = O,(1) from Lemma S.6(i), |n~' X1, 7 — I| = Op(1/4/n) from Lemma S.1(i) and
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maxXe[p] [ai| = O(1) from Assumption 3'(i) yield that the third term is of order Op(1/4/n). Combining
the above results, we obtain that

max [§; — Ho| = Op(Men/logp/n +1/y/p) = Op(wn,p).

S.2.3 Proof of Corollary 1'
By Theorem 1'(ii)(iii), Lemmas S.6(ii) and B.16(ii), we have

_max 4y, — q; v s max (@i — Haif - max |5, — Hy,|| + max [Ha, | - max |7, — Hy|
ic[p] teln] iclp] tefn] iclp] tefn]

+ mae G — Hag] - max [Hoy,| + max il - max || - [H7H — 1,
i€lp] t€in] i€ip] t€in]
=Op{wn7p - (Me/v/n+ \/logn/p)} + Op(M./+/n + +/logn/p)
+ Op(wnyp - V/logn) + Op{\/logn - (Me/v/n + 1/\/13)}

:Op{/\/ls\/lognlogp/n + 4/log n/p}.

S.2.4 Proof of Theorem 4'

To prove Theorem 4', we first present a technical lemma with its proof.

Lemma S.7. Under the assumptions of Theorem J', it holds that
(i) maXe[p] T ! Zt 1 1&6 — 5tiH2 = Op(quz,p);

(“) max; je[p] HTL Zt:l gtlé\tj —nt Z?:I EtiEthS = Op(wnvp);
(iii) |2 — X = OP(wn,p)'

Proof. (i) Note that e;(-) —4i(-) = {vui() —ai(- ’Yt} {vei() =@ ()" 3¢} = Qi)"Y —qi(-) "4, which can
be decomposed as q;(-)"y; —qi(-) "y, = {Qi —q;(: TH}’Yt +ai(-)"H' (3, —Hv) +qi(1)"(HTH- L)y,
Applying the inequality (a + b + ¢)? < 3a® + 3b? + 3c? and the Cauchy-Schwarz inequality yields that

n n

1
max — Eti — € <3max H 21 512 & 3max la; |21 HI2 = o Hel?
max Z |2 — eul’? 13 = Haul* 7 33 15l + 3ma P I 35 15 — Hove

n

+ 3max | q;|*|H™H — I, |? Z v, |2
i€[p]
=0p(wp ) + Op(MZ/n + 1/p) = Op(w}, ).

(ii) Notice that maxe[y Eley|? = maxze[p E {eyi(u)?du = maxepp) § Xeii(u, u)du = O(1) from Assump-
tion 3'(iv), thus we have max;ep, n~t Y1 [ewl|* = Op(1). By the Cauchy-Schwarz inequality, we have

n
max H Z EnEtj Z EtiEth = max H Eti — 5ti)§tj + Eti(gtj — Etj)H
i,j€[p n/= i,j€[p S
1 ~ 1 ¢ 1/2 1 a 1/2
<mx - 2 [ — zuil® + 2(max — 3 leul?) T (max = By — 21?)
ilp] M = i€lp] M = jelpl M 5



(iii) By part (ii) and Lemma S.1(ii), the result follows immediately. O

We are now ready to prove Theorem 4'. By Corollary 1' and Lemma S.7(i), we can follow nearly
the same procedure as in the proof of Theorem 4 to show the similar argument that there exist some

constants C,Ce > 0 such that with probability approaching one,

Cr < min [0;]s < nmx\@/%
i€[p].jelp]
Together with Lemmas S.7(iii), we can show that for any € > 0, there exist some positive constant N
such that each of events
T = { max ‘Es,z’j — Zejij
i€[p].jelp]

< an,p}, Ty = {C1 <85 < Ca, allisjie [n]}

hold with probability at least 1 —e. Then for C > 2N Cy l(wn,p Jwnp) and under the event T Tg, we
obtain that HfJA — EgHS 15 w}fp sp by using the same way as the proof of Theorem 4. By Proposition 3,
we know that R4 = 2 . Therefore, with probability at least 1 —2¢, [R* — |51 < wnpls,. Considering
that € > 0 can be arbitrarily small, we have |[R4 — 3|, < |[R4 — Op(wnlsy).

S.2.5 Proof of Theorem 5'

Under Assumption 1', we have X (u,v) = Q(u)Q(v)" + X.(u,v). By the Cauchy—-Schwarz inequality
and Lemma A.10, we have

1QQ" -

T
= ma g
ax la;a; — a; qjls

5

< max {l(@ — Ha:)"qj]s + [q; H" (q; — Ha;)|s + [q; (H"H - I,)q;|s}

<max |G — Ha[? + 2|H] max [y d; — Hal + |H"H — 1, | max q;]*
1€ [ ’LE le[p]

=0p(wp ) + Op(@np) + Op(Me/v/n + 1//p) = Op(wn,p),

where the last line follows from Theorem 1'(iii) and Lemma S.6. Then by Lemma S.7, we have |2, —

’ie,ij —Ycijls = Op(wnp), and hence

= ax; je(p

~ A ~ A ~
12 = Eeflsmax < [ — X

max (18,%s3) + Op(@np) = Opl(np),
where @U(u v) =n 130 {5m 615]( ) — ieﬂ-j(u,v)}Q, the last line follows from Lemma S.7(iii), the
choice of A = C(y/logp/n +4/1/p) < @nyp, and the fact max; jep, H@1/2H5 = Op(1) that can be proved
following a similar argument compared to the proof of Lemma B.27. The desired result follows immedi-

ately.
S.2.6 Proof of Theorem 6'

Given Ker(X,.) = Ker(QX,Q"), with the covariance decomposition for FPOET estimator 3, (u,v) =
Q(u)2,Q(v)" 4+ X (u,v), we apply Sherman-Morrison-Woodbury formula (Theorem 3.5.6 of Hsing and
Eubank (2015)) to obtain its inverse 2;2 =2 -2IQI,+Q"=IQ)'Q"X! (note that under Assumption 1',
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¥, =1, and f)y = I,). Then, the plug-in inverse FPOET estimator is defined as (f);)T = (].?{““)T -
RHYTQL + Q(RYTQ}QT(RA). In this section, (R4)" and {I, + QT(R*)TQ}' are defined in a similar
way to the inverse in Lemma B.15 associated with X, and I+ QTEIQ, respectively. To prove Theorem 6',

we first present some technical lemmas with their proofs.

Lemma S.8. Under the assumptions of Theorem 6', then, R+ has a bounded Moore—Penrose inverse

with probability approaching one, and H(ﬁ““)T - EZHL = Op(w}ﬂ;qsp).

Proof. Provided that w,ll;,qsp = o(1) and |E!|z > ¢ for some constant ¢5 > 0, we combine Lemma
B.15 and Theorem 4' to yield that | (f{A)TH £ < 2cs with probability approaching one, and thus R4

has a bounded Moore—Penrose inverse with probability approaching one together with the desired result
H(RA)T - 2;(“[: = Op(wvlz;?qsp)- O

Lemma S.9. Under the assumptions of Theorem 6,
|Q"(R)'Q — HQ"SIQH"| 2 = O, (pw,,,7s,) = 0p(p)-

Proof. In model (2), Q(:) can be viewed as a bounded linear operator from R" to HP, and thus we can

also regard it as a kernel matrix function satisfying Q(u,v) = Q(u),Vu,v € U. From this perspective,

HQH?SF =3P | lail? = § Qu)*Q(u)du = p(Y1 + - - - + ¥,) = p under Assumption 1'. By Theorem 1'(iii),
~ ~ 1/2

IQ - QH"|sr = {32, |G — Hay|?}"* = O, (y/pwn,). Hence,

IQ"(RY)'Q - HQ'SIQH" | <2|(Q - QH")"(RY)!Q| + [HQ"{(RY)! — =[}QH"|,
<2|Q - QH"[sr|(RY)2]Q|sr + |Q%FIH|? R — =L,
=0, (pwn,p) + Op(pw}l;,qsp) = Op(pw%;)qsp) = 0p(p),

where the second inequality follows from Lemma A.7(i)(ii), and the last line follows from Lemmas S.6
and S.8. O

Lemma S.10. Under the assumptions of Theorem 6,
(i) |(I + HQ"SIQH") |z = 0(p™");

(ii) {T, + Q"(R)1Q} e = Op(p~");

(iii) |1 + Q"=LQ)T| 2 = O(p™);

(i) [{HH")" + Q"=IQ} . = O(p™).

Proof. (i) By Lemma S.6, with probability approaching one, Ayin (HH™) is bounded away from 0. Hence,
|(X + HQ"SIQHT) |z < [(HQ™SIQHT) |2 < (A (HTH)} e[ [(QQY'| = O,

where [(QQ™)|z = (pd,)~! by Assumption 1' and ||z = O(1) by Assumption 3'(iii).

(ii) The result follows from part (i) and Lemmas B.15 and S.9.

(iii) The result follows from a similar argument to that for part (i).

(iv) The result follows from part (iii) and Lemmas B.15 and S.6. O
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We are now ready to prove Theorem 6'. Using the functional version of Sherman—Morrison—Woodbury

formula, we have | (2 )T — ETHE SO _, Ly, where

L =|®* - =] .

Ly =[{(R*)" — SHQ{L, + Q"(R#) Q}*QT(ﬁAm,

Ly =[{ R - =1Q{1, + Q"(RYH'Q)Q =t
=|={(Q - QH"){I, + Q"(RM'Q}'Q=!

Ls =|=H(Q - QH"){L, + Q"(R*) Q}THQT

Le =|SIQHT[{I, + Q"(RY'Q} — (I, + HQ"SIQH")|HQ™S]| .

Combining with Lemmas S.8 and S.10, the desired result follows from a similar argument to the proof of
Theorem 6.

S.3 Proofs of theoretical results in Section 4

For the sake of brevity and readability, in this section, we suppose that the orthogonal matrix U in
Theorem 1 and Lemmas B.23-B.28 is an identity matrix, which means that, when we perform eigen-
decomposition on ﬁ, we can always select the correct direction of Ej to ensure EJTIN)] > 0. The proofs in

Section 3 verify that the choice of U does not affect the theoretical results.
S.3.1 Proposition S.1-S.2 and their proofs

The following two propositions are used in Section 4.1 to quantify the maximum absolute and relative
approximation errors of the functional portfolio variance.

~

Proposition S.1. Let ¥ = {¥;;(-,)}pxp, and S = {5 (-, ) }pxp with each Eij,flij € S. For any fized

w(-) € HP, we have
2
(> il
i€[p]

(W, B(w)) — (W, B(w))| < [£ - =

Proof. Consider that

R ZJJ Z[:] Z[]] w;(w)w; (v) ;5 (u, v)dudv
<%n]jez[:p] U f i U>2dUdv}l/2 U f wi(“)ij(U)Qdudv}l/Q

i 5 3 el o]
2[] 3, ol = (3 1wd)”

i€[p]

Thus, [(w, S(w)) = (w, B(w))| = [(w, (£ = Z)w))| < |18 = s max (K1, i) =
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Proposition S.2. Suppose 3 and S are Mercer’s kernels and ¥ has a bounded inverse. For any fized
w(-) € Ker(Z)*, we have

1| < [(=hH2EEh? - L.

(w,S(w))
(w,S(w))

Proof. For any given w € Ker(2)+, we denote x = /2w € Im(X) and w = (27)/2x, provided that X

has a bounded inverse. Consider that

(w,B(w)) = ffw v)dudv = wa Uzlﬁ(u,w)zl/?(w,v)dw}w(v)dudv
- [{[wor= w>du} {22 0wl auw = [xtwrxtuo - |x?

The relative error can be bounded by

‘<w, S(w)) 1‘ _ ‘<w, B(w)) — (w, B(w))

(w, XE(w)) (w, B(w))
[, (ENV2(E - =) (8N V2 ())|
|||
<|(EHEEN2 -1,
where the last line follows from Lemma B.14. O

S.3.2 Proof of Theorem 7

Since there exist constants ¢z and ¢4 > 0 such that |[Zf], < e, HEML < ¢4, we can obtain that
HEL”E = 0O(1), and thus for any K € HP @ HP, HKH‘%’E?J = O(p™")|K|% by Lemma A.8(iii).

To prove Theorem 7, we first present some technical lemmas with their proofs.
Lemma S.11. Under the assumptions of Theorem 7, we have ||BTZLBH[; =0(1).

Proof. By Theorem 3.5.6 of Hsing and Eubank (2015), we obtain that
») = x! - =Bz} + B'SB)'B"S.
Then it follows that
B"%|B =B"S!B - B'S[B(Z} + B"S[B)'B"S!B
-B"s[B(z} + B"=[B)'®]
_yit il L gTyig)ist
-»} - =iz} + B'sIB)'2},

(S.9)

where the last two equalities follow from the assumption Ker(X.) = Ker(BX¢B™). (S.9) also implies that
Z} > Z}(Z} + BTZlB)TE}Lr since BTZLB > 0. Here, for two Mercer’s kernels K, G € H" @ H", we denote
K > G as the eigenvalues of K — G are nonnegative, i.e., K — G is still a Mercer’s kernel. Similar to the
monotonicity of matrix spectral norm, it can be shown that the operator norm is monotone, i.e., K > G
implies |K|z = |G|z. Thus, from (S.9) we have

IB™®{B| < [} + [ZHE] + B'SIB) ®l . < 2|22 < 204 = 0(1),
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where the second inequality follows from the monotonicity of the operator norm. O

Lemma S.12. Under the assumptions of Theorem 7, it follows that

. SA 2—2
(i) |22 = Ze|E 5, = Op(wnyp '57);

(ii) [(B = B)S (B — B)" |35, = Op(Mlp/n® + 1/p°);
(iii) |BE (B — B) |35, = Op(M2/n + 1/p%);
(iv) IB(S; — S1)B 35, = Op(Me/(v/p) + 1/p°7}.

Proof. (i) Since all the eigenvalues of X, are bounded away from zero, and by Theorem 4,

A~

A 1A A _
152 = Zelfg, =7 IED — Belfp = |22 - Bz = Op(wy ,53).

(ii) By applying Lemmas A.8(iii) and B.23, we have
|(B-B)Z;(B —~B)"[§s, <p 'IB - Blp|S(IZ[ZZ = Op(Mip/n® + 1/p°).

(iii) Consider

IBS;(B - B)"|3y, =p 'tr U [f:f(ﬁ ~B)"'=[(B - B)f:fBTz;B] (u, u)du}
<p”'|B"S!B| 2| cIB - BJEIZ /3
=0p(MZ/n +1/p?),

where the first inequality follows from Lemma A.8(ii) and the last line follows from Lemmas S.11 and
B.23.

(iv) A similar argument shows that

IB(Z; - 2p)B |3y, =p 'tr U [(i:f ~;)B"EIB(Z; - Ef)BTELB] (u,u)du}
<p IBTSIBIZIZ - 42l - Zflw
=0p{Mc/(v/np) + 1/p*?},

where the first inequality follows from Lemma A.8(ii) and the last line follows from Lemmas S.11 and
B.28. O

We are now ready to prove Theorem 7. By Lemma S.12,

oD

~ A ~ ~ ~
1y = ZylE s, <2UB - Zclss, +2(B-B)Z(B - B)[5s,
+4|BZ;(B - B)"[§ 5, + 2[B(X; - X)B”

2
S35y

which then implies that

185 - Byl = 0, (T2 4wyt ).
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S.4 Proposition S.3 and its proof

The following proposition supporting Section 5 gives the true covariance matrix functions for two

DGPs and the functional sparsity condition.

Proposition S.3. (i) For y.(-) generated from model (1),
25

B{Zr%, ¢i(v) (I — A?) BT + ) 3712 gy (u) ¢y (v) C.

=1
(ii) For y:(-) generated from model (2),
25
%y (u,v) = Q(u)(L, — A*)7'Q(v)" + Y. 37122 gy (u) gy (v)C
=1

(i4i) The functional sparsity condition on X. as specified in (7) satisfies s, < p'=% for a € [0,1] and
q=0.

Proof. (i) Let By = (&,..-,&50) € R and ¢(-) = {17¢1(-), 27 ¢2(-), ..., 50" g50()}". Note that
E{fi(-)} = 0 and

2 ¢ (u,v) = Cov{Zse(u) }—Zz% (v)Var(€,),

provided that Cov(&,;,&,/) = Opx, for any i # ¢/. Let C; = Var(¢,) and C, = I, be the covariance
matrix of the innovation uy. For weakly stationary VAR(1), it holds that

C; =C, + AC,A" + A%C,(A")? Z A*C

=i AAT) ZA2S— (I, — A%)~!

Similarly, ¥_(u,v) = 2%31 27y (w) gy (v) Var () = 21221 3_122_l¢l(u)gbl(v)C<, provided that Var(v,) =
> 0.5%C; = 4C,/3. Hence we have

25
2, (u,v) = BE(u,v)B" + . (u, v) {21—2@ ¢i(v) (T, — A%)~ }BT+23_122_Z¢1(U)¢1(0)C
=1

(ii) The desired result follows immediately from the proof of part (i).

(iii) To see the functional sparsity condition on ¥, notice that
25

oi(u) = X i(u, u) Z 371227y (u)?D2(1 +6) and |oylly = JUZ Ydu = éD?,
=1
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where & = 371(4 — 2723)(1 + §) is a constant. Then, for ¢ = 0 in (7), we have

1 2 1 2
—maxz los 22 o118 51 = maxz D D;I{|[ 2 5] # 0}

P P
<(cmaXD 2 (Co,ij #0) < m Z <plte
— G j=1

S.5 Further derivations and definitions

This section contains further derivations and definitions supporting the main context of the paper.
S.5.1 Estimating FFM (1) from a least squares perspective

Similar to Section 2.2, we develop a least squares method to fit model (1) with functional factors. Let
Y()={yi(-),...,yn(-)} e RP*" and F(u)" = {f1(-),...,£.(-)} € R"™*™. Consider solving the least-squares

minimization problem
lll.ll i —B:E T 2d = i —Bf 2 S].O
aTgB’I;(')f’ (U) (U) HF u aTgBﬂ’l}‘ll(l‘)gl\D’t tH , ( )

subject to the normalization p~'BTB = I,. Following the similar procedure in Section 2.2, we obtain
that, for each given B, the constrained least squares estimator f‘() = p~!BTY(-). Plugging this into
(S.10), objective function becomes {tr[(I, — p~'BB”)Y (u)Y (v)"]du, whose minimizer is equivalent to
the maximizer of tr{B"[{ Y (v)Y (v)"du]|B}. Apparently, B /+/P are the eigenvectors corresponding to the
r largest eigenvalues of the p x p matrix (Y (u)Y (u)"du = ngﬁj(u, u)du.

For the DIGIT method, the loading matrix B is estimated by the eigenanalysis of { § f)j (u, v)ff; (u,v)Tdudv,
while the above shows that minimizing the least squares criterion (S.10) is equivalent to performing eige-
nanalysis of Sﬁj(u,u)du By comparison, the DIGIT method contains more covariance information by
taking into account not only the diagonal entries f];(u,u) but also the off-diagonal entries f];(u,’u) for
u # v. Although such increased information may not alter the convergence rate of the proposed estimator,

it will reduce the variance to improve the estimation efficiency.

S.5.2 Relationship between two FFMs
Notice that x;(-) = Bfy(-) and k:(-) = Q(-)y; are the common components of the two FFMs (1) and

(2), respectively. The covariance matrix function of x,(-) is

0
=\ (u,v) = BE(u,v) {Zwm $i(0)" }BT = 3 ity (), (v)", (S11)
i=1
where, by Mercer’s theorem, Xf(u,v) = Y7 wi;(u);(v)" and 1;(-) = Bep;(-)/\/p. Suppose that
Assumption A.1 is satisfied with 3, = diag(?1, ..., 7,). The covariance matrix function of k() is
>, (u,v) = Q(u) Z ;d,(w)g Zpﬁ vi(u)v,(v)", (S.12)
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where {q;(-)}7_; is the set of columns of Q(-) such that {|g;[|}7_; is in a descending order, and v(-) =
q;(+)/+/p- Note that

[ it (u)du = [ 105 BB (udu = [ 640)7 @y (u)du = 106 = ), and
Jui(u)Tuj(u)du =p ! fﬁi(u)Tﬁj(u)du = I(i = j) from Assumption A.1.

Consequently, {t;(-)};Z; are the eigenfunctions of ¥, with nonnegative eigenvalues {pw;};2;, and {v;(-)}]_;,
which can be extended to a set of orthonormal basis functions, are the eigenfunctions of 3, with nonneg-
ative eigenvalues {péj }721 satisfying 1v9j =0 when j > r.

In this point of view, FFM (1) can be converted to FFM (2) if and only if w; = 0 when ¢ > r. On the
contrary, model (2) can be regarded as a special case of model (1) if and only if the solutions of {¢;(-)}}_;
to the functional equations Be;(-) = q;(-) for j € [r] exist given B and {;(-)};_;. Since the rank of the
space spanned by columns of matrix B is r, the equivalent condition for the existence of the solutions

follows that the rank of the space spanned by {q;(-)}7_; is 7.
S.5.3 Sub-Gaussian (functional) linear process
We first define sub-Gaussian functional process.

Definition S.1. Let x4(-) be a mean zero random wvariable in H and Yo : H — H be a covariance

operator. Then x() is a sub-Gaussian process if there exists a constant o = 0 such that for all x € H,
E(explx, z:)) < exp{a®(x, ¥o(x))/2}.

To develop finite-sample theory for relevant estimators in Section 3, we focus on multivariate functional

linear process with sub-Gaussian errors, namely sub-Gaussian functional linear process. Specifically, we

assume z:(-) = {z41(-), ..., zp(-)}" € HP admits the representation
0 ¢]
z:(-) = Y Ay(x), tEZ, (S.13)
1=0
where A; = (Ap;j)pxp With each A;;; € S and x(-) = {xu(-),...,zep(-)}" € HP, whose components

are independent sub-Gaussian processes satisfying Definition S.1, and the coefficient functions satisfy
Yi2ollAlls o = O(1). In Section 3, we assume that f;(-) in model (1) and &;(-) follow sub-Gaussian
functional linear processes, and -, in model (2) follows sub-Gaussian linear process, which can be corre-

spondingly defined from the non-functional versions of (S.13) and Definition S.1.
S.5.4 Optimal functional portfolio allocation

In this section, we derive the optimal functional portfolio allocation w(-) that is required in Section 6.

Specifically, we aim to solve the following constrained minimization problem:

W = arg min {(w, iy(w)> subject to J w(u)"1,du = 1.
u

weHP
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To solve this, we apply the method of Lagrange multipliers by defining the Lagrangian function as
L(w,\) = J f w(u)Tﬁy(u,v)w(v)dudv - 2)\f {w(u)"1, — 1}du,
u Ju u

where A € R is the Lagrange multiplier. Setting the functional derivative of L(w, \) with respect to w(-)
to zero, ie., 2§, iy(u7 v)W(v)dv —2X -1, = 0 for u € U, we obtain that

w(u) = \- f};l(lp)(u) = )\L{ f];l(u,v)lpdv, uel.

With the constraint Sz,{ "1,du = 1 and the use of Moore-Penrose inverse, it yields the desired solution
N SL{ (u,v)1,dv
w(u) = uel.
Su S, 1T2 dzdv

S.5.5 Optimal portfolio allocation based on POET

Instead of modeling the CIDR data as p-vector of functional time series, we can treat the data at each
intraday time point uy, as p-vector time series, i.e., {y(ux)}se[n] for k € [K], where K denotes the number

of intraday time points. For each vector time series, we assume the following factor model:

vi(ur) = Bpfy s + epe, te[n], ke [K].

Then, the standard POET estimator (Fan et al., 2013) can be applied to obtain the estimated covariance
matrix of y;(uy) as f)y(uk, Ug)-

To incorporate the non-functional method into our functional risk management formulation, we also
need to estimate the cross-covariance matrix 3, (ug, w;) = Cov{y(ux),y:(u;)} for k # [ € [K]. Assuming
that Cov(fy¢,e14) = 0 for k,l € [K], it follows that 3, (ux, w;) = BxCov(f; ¢, f1.)B; + Cov(ek, €14). Thus,

3y (ug, u) can be estimated as

n
S ’\ n-1 DT -1 ~ AT
3 (uk, uy) Z fy.. tfl +)bp +n 2 Ek.tE ¢
t=1

where By, {Eﬁﬂf}té[n] and {€ ¢ }se[n] are obtained by the POET method. With the (cross-)covariance matrix
estimates iy(uk, w) for k,l € [K], the optimal portfolio allocation can be obtained by minimizing the

perceived portfolio risk:

1 K K R K
(W) herre) = arg min — > w(wg) Sy (up, u)w(ug) s.t. Z =1. (S.14)

{w(uk) b rerr 1=l

Define the matrix fly = (f]y(uk,ul)) e REP*KP whose (k,1)-th block is f]y(uk,ul). Following similar
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derivations as in Section S.5.4, the solution of (S.14) is given by

S.6 Additional simulation results

This section provides additional results supporting Section 5. Figure S.1 presents boxplots of AIC;
(1 € [3]) for two DGPs under the setting p = 100,n = 50, « = 0.05,0.1, and r = 3,5, 7. Table S.1 reports
the model selection accuracies for different values of a. The results show that the proposed criteria can

select the correct model with high probability even when o and n are relatively small.

r=3,a=0.05 r=3,a=0.1 r=5,a=0.05 r=5a=0.1 r=7,a=0.05 r=7,a=0.1
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Figure S.1: The boxplots of AIC; (i € [3]) for DGP1 and DGP2 with p = 100,n = 50, = 0.05,0.1 and r = 3,5,7
over 1000 simulation runs.
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Table S.1: The average relative frequency estimates of P{IC”(#?) < IC”(#7)} for DGP1, and P{IC”(7?) <
IC” (#7)} for DGP2 with p = 100, n = 50,100, @ = 0.05,0.1,0.25,0.5 and r = 3,5,7 over 1000 simulation runs.

r=3 r=2>5 r=7
« n criterion DGP1 DGP2 DGP1 DGP2 DGP1 DGP2
AIC, 0.990 0.977 0.984 0.988 0.977 0.998
50 AIC, 0.993 0.980 0.992 0.989 0.988 0.998
AIC3 0.979 0.972 0.976 0.986 0.962 0.997

0-05 AIC, 0.994 0974 0994 0992 0989  0.997
100 AIC, 0.998 0.975  0.996  0.993  0.996  0.996

AICs 0.993 0.971 0.991 0.992  0.985 0.995

AIC 0.992 0.974  0.975 0.993  0.980  0.998

50 AIC, 0.998 0976  0.984 0996  0.984  0.997

0.10 AIC3 0.988 0.962  0.965 0.991 0.962 0.994
AIC 0.996 0.974  0.995 0.990  0.995 0.991

100 AIC, 1.000 0.974  0.999  0.990 1.000  0.992

AIC3 0.993 0.971 0.990 0989 0988  0.991

AIC, 0.996 0.983  0.980 0.995 0973  0.996

50 AIC, 0.996 0.985  0.985 0.997  0.984  0.998

0.95 AIC3 0.991 0.982 0973 0992 0.959  0.996
AIC, 0.998 0.980  0.993  0.989  0.993  0.994

100 AIC, 0.999 0.981 0.999 0989  0.998  0.994

AIC3 0.997 0978  0.991 0.989  0.987  0.992

AIC, 0.998 0.997  0.995 1.000  0.994 1.000

50 AlIC, 0.999 0.998  0.996 1.000  0.995 1.000

0.50 AICs 0.998 0.997  0.993 1.000  0.990 1.000

AIC, 1.000  0.998  0.999 1.000  0.998 1.000
100 AIC, 1.000  0.998 1.000 1.000  0.999 1.000
AICs 1.000  0.998  0.998 1.000  0.997 1.000

We conduct additional simulations with data generated using p = 100,n = 50, = 0.5 and r = 3 for
DGP1 and DGP2. The identified number of factors is set to # = 1,3,5,7 when calculating IC? and IC7,
with the results reported in Figure S.2. It is observed that the proposed criteria exhibit strong robustness

against the misidentification of the number of factors.
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Figure S.2: The boxplots of AIC; (i € [3]) for DGP1 and DGP2 with p = 100,n = 50, = 0.5,r = 3, and the
number of factors to calculate IC? and IC] being fixed as # = 1,3,5,7 over 1000 simulation runs.

The model selection criteria assessed above use the same penalty function when calculating both IC?
and IC”. According to the discussion in Section 2.4, different penalty functions from the perspective of
model complexity can be applied with ¢”(p,n) = (p+ns,—k)/pn for IC? (k) and ¢” (p,n) = (psn,+n—k)/pn
for IC” (k). When M. = o{+/log(p A n)} and p = n, it can be shown that s,, = log n guarantees that both
g”(p,n) and g”(p,n) satisfy the conditions in Theorem 3. Table S.2 presents the numerical summaries
for the model selection accuracies when different penalty functions are employed. The results show that

the proposed criteria remain effective.

Table S.2: The average relative frequency estimates of P{IC”(#?) < IC”(#7)} for DGP1, and P{IC”(7#?) <
IC(#7)} for DGP2 with p = 100,n = 50,100, = 0.05,0.1,0.25,0.5,7 = 3,5,7 and different penalty functions for
IC? and IC” over 1000 simulation runs.

r=3 r=>5 r=17
@ n DGP1 DGP2 DGP1 DGP2 DGP1 DGP2
50 0.994 0.945 0.971 0.982 0.961 0.988

0.05 100  0.998 0.980 0.991 0.994 0.985 0.998
0.10 50 0.991 0.941 0.979 0.966 0.973 0.990
100  0.991 0.971 0.993 0.986 0.987 0.996
0.25 50 0.995 0.956 0.980 0.987  0.972 0.992
100  0.998 0.979 0.998 0.992 0.989 0.997
0.50 50 0.999 0.996 0.991 0.999 0.993 1.000

100 0.999 1.000 1.000 1.000  0.997 1.000

Then we examine the performance of model selection criteria when there exist moderate to even
strong correlations in idiosyncratic components. Specifically, we generate new idiosyncratic components
&:(-) = cp®?e4(-) for 6 € (0,1) and ¢ = 2 (or 0.6) for DGP1 (or DGP2) which results in |Zz|z = O(p°).
The model selection accuracies are presented in Table S.3. The results indicate that the model selection

accuracies decrease (particularly noticeable for DGP2) as § increases.
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Table S.3: The average relative frequency estimates of P{IC”(#?) < IC”(#7)} for DGP1, and P{IC”(7?) <
IC”(#7)} for DGP2 with p = 100,n = 50,100, = 0.25,0.5,« = 0.5 and r = 3, 5,7 over 1000 simulation runs.

r=3 r=2>5 r=7
13 n criterion DGP1 DGP2 DGP1 DGP2 DGP1 DGP2
AIC, 0.964 0.997 0.961 1.000 0.941 1.000
50 AIC, 0.958 0.997 0.948 1.000 0.938 1.000
AIC3 0.809 0.997 0.832 1.000 0.827 1.000

0-25 AIC, 1.000 1.000 1.000  0.999 1.000 1.000
100 AIC, 0.998 1.000 1.000  0.999 1.000 1.000

AICs 0.939 1.000  0.962 0.999  0.954 1.000

AIC 0.956 0.767  0.925 0.878  0.892 0.920

50 AIC, 0.947  0.734 0910 0.869  0.882 0.921

0.50 AICs 0.818 0.779  0.776  0.873  0.735 0.916

AIC 0.999 0.832  0.998  0.935 0.997  0.964
100 AIC, 0.992 0.819 0986  0.925 0.984  0.958
AIC3 0.947  0.829 0946 0917  0.941 0.946

We compare our AFT estimator in (10) with two related methods for estimating the idiosyncratic
covariance 3., specifically, the sample covariance estimator defined as f]f(u, v) =n LY e (u)E(v)T,
and Fang et al. (2024)’s AFT estimator in (11). Figures S.3 and S.4 plot average losses of £, measured
by functional matrix ¢; norm and operator norm for DGP1 and DGP2, respectively, under the settings
n =p = 60,80,...,200 and o = 0.25,0.5,0.75. We observe several evident patterns. First, the estimation
accuracy measured by both functional matrix norms substantially improves when using the AFT esti-
mators compared to flj Second, despite our AFT proposal requiring weaker assumptions compared to
Fang et al. (2024)’s method, both AFT estimators exhibit very similar empirical performance. Third,
for a = 0.25 and 0.5, the performance of the sample and AFT estimators deteriorates as p increases.
However, when oo = 0.75, both losses of two AFT estimators do not show significant upward trends. This
phenomenon can be attributed to the fact that {(logp/n)"/? + p~1/2}p!=® = o(1) as p,n — © if a > 0.5,
which is implied by Theorems 4 and 4' under the setting n = p,q = 0, M. = O(1).

29



Estimator -~ Sample -4- Fangetal.'s AFT -®- Our AFT

a=0.25 a=0.5 a=0.75
80
£ 16
5]
=4
', 60 30
)
Rt 12
=
5]
€ 40 20
g 8
8 - .-'“.
c 20 10 U A
3 o T
o A
60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200
p
a=0.25 a=05 a=0.75
14
25
0.6
12
£
g 20 10
< i 0.5
8
©
o 15 0.8
53 0.4
O btk | 06 PR
A Pl A .«l»—..,..f-*“ ol —
104 .~ T p= T '.'\1..‘\ o Wy
I'e = 0.3 ol ot |
60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200 60 80 100 120 140 160 180 200

p

Figure S.3: The average losses of 3. in functional matrix £; norm (top row) and operator norm (bottom row) for
DGP1 over 1000 simulation runs with n = p = 60, 80,...,200 and o = 0.25,0.5,0.75.
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Figure S.4: The average losses of 3. in functional matrix £ norm (top row) and operator norm (bottom row) for
DGP2 over 1000 simulation runs with n = p = 60, 80,...,200 and a = 0.25,0.5,0.75.

Figures S.5 and S.6 plot average losses of f)y measured by functional versions of elementwise £, norm,

Frobenius norm and matrix ¢; norm for DGP1 and DGP2, respectively, when C=1.
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Figure S.5: The average losses of fly in functional versions of elementwise £, norm (left column), Frobenius norm
(middle column) and matrix ¢; norm (right column) for DGP1 with C' = 1 over 1000 simulation runs.
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Figure S.6: The average losses of fly in functional versions of elementwise £, norm (left column), Frobenius norm
(middle column) and matrix ¢; norm (right column) for DGP2 with C' = 1 over 1000 simulation runs.

S.7 Additional real data result

Table S.4 presents the list of S&P 100 component stocks used in Section 6.
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Table S.4: List of S&P 100 stocks.

Ticker Company Sector Ticker Company Sector

AAPL APPLE INC Information Technology JPM JPMORGAN CHASE & CO Financials

ABBV ABBVIE INC Health Care KHC KRAFT HEINZ Consumer Staples

ABT ABBOTT LABORATORIES Health Care KMI KINDER MORGAN INC Energy

ACN ACCENTURE PLC CLASS A Information Technology KO COCA-COLA Consumer Staples

AGN ALLERGAN Health Care LLY ELI LILLY Health Care

AIG AMERICAN INTERNATIONAL GROUP INC Financials LMT LOCKHEED MARTIN CORP Industrials

ALL ALLSTATE CORP Financials LOW LOWES COMPANIES INC Consumer Discretionary
AMGN AMGEN INC Health Care MA MASTERCARD INC CLASS A Information Technology
AMZN AMAZON COM INC Consumer Discretionary MCD MCDONALDS CORP Consumer Discretionary
AXP AMERICAN EXPRESS Financials MDLZ MONDELEZ INTERNATIONAL INC CLASS A Consumer Staples

BA BOEING Industrials MDT MEDTRONIC PLC Health Care

BAC BANK OF AMERICA CORP Financials MET METLIFE INC Financials

BIIB BIOGEN INC Health Care MMM 3M Industrials

BK BANK OF NEW YORK MELLON CORP Financials MO ALTRIA GROUP INC Consumer Staples

BLK BLACKROCK INC Financials MON MONSANTO Materials

BMY BRISTOL MYERS SQUIBB Health Care MRK MERCK & CO INC Health Care

C CITIGROUP INC Financials MS MORGAN STANLEY Financials

CAT CATERPILLAR INC Industrials MSFT MICROSOFT CORP Information Technology
CELG CELGENE CORP Health Care NEE NEXTERA ENERGY INC Utilities

CHTR CHARTER COMMUNICATIONS INC CLASS A Communication Services NKE NIKE INC CLASS B Consumer Discretionary
CL COLGATE-PALMOLIVE Consumer Staples ORCL ORACLE CORP Information Technology
COF CAPITAL ONE FINANCIAL CORP Financials OXY OCCIDENTAL PETROLEUM CORP Energy

COP CONOCOPHILLIPS Energy PCLN THE PRICELINE GROUP INC Communication Services
COoSsT COSTCO WHOLESALE CORP Consumer Staples PEP PEPSICO INC Consumer Staples
CSCO CISCO SYSTEMS INC Information Technology PFE PFIZER INC Health Care

CVs CVS HEALTH CORP Health Care PG PROCTER & GAMBLE Consumer Staples

CVX CHEVRON CORP Energy PM PHILIP MORRIS INTERNATIONAL INC Consumer Staples

DHR DANAHER CORP Health Care PYPL PAYPAL HOLDINGS INC Information Technology
DIS WALT DISNEY Communication Services QCOM QUALCOMM INC Information Technology
DUK DUKE ENERGY CORP Utilities RTN RAYTHEON Industrials

EMR EMERSON ELECTRIC Industrials SBUX STARBUCKS CORP Consumer Discretionary
EXC EXELON CORP Utilities SLB SCHLUMBERGER NV Energy

F F MOTOR Consumer Discretionary SO SOUTHERN Utilities

FB FACEBOOK CLASS A INC Communication Services SPG SIMON PROPERTY GROUP REIT INC Real Estate

FDX FEDEX CORP Industrials T AT&T INC Communication Services
FOX TWENTY-FIRST CENTURY FOX INC CLASS B Communication Services TGT TARGET CORP Consumer Discretionary
FOXA TWENTY-FIRST CENTURY FOX INC CLASS A Communication Services TWX TIME WARNER INC Communication Services
GD GENERAL DYNAMICS CORP Industrials TXN TEXAS INSTRUMENT INC Information Technology
GE GENERAL ELECTRIC Industrials UNH UNITEDHEALTH GROUP INC Health Care

GILD GILEAD SCIENCES INC Health Care UNP UNION PACIFIC CORP Industrials

GM GENERAL MOTORS Consumer Discretionary UPS UNITED PARCEL SERVICE INC CLASS B Industrials

GOOG ALPHABET INC CLASS C Communication Services USB US BANCORP Financials

GS GOLDMAN SACHS GROUP INC Financials UTX UNITED TECHNOLOGIES CORP Industrials

HAL HALLIBURTON Energy \4 VISA INC CLASS A Information Technology
HD HOME DEPOT INC Consumer Discretionary A\ VERIZON COMMUNICATIONS INC Communication Services
HON HONEYWELL INTERNATIONAL INC Industrials WBA WALGREEN BOOTS ALLIANCE INC Health Care

IBM INTERNATIONAL BUSINESS MACHINES CO Information Technology WFC WELLS FARGO Financials

INTC INTEL CORPORATION CORP Information Technology WMT WALMART STORES INC Consumer Staples

JNJ JOHNSON & JOHNSON Health Care XOM EXXON MOBIL CORP Energy
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