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Abstract

Covariance function estimation is a fundamental task in multivariate functional

data analysis and arises in many applications. In this paper, we consider estimating

sparse covariance functions for high-dimensional functional data, where the num-

ber of random functions p is comparable to, or even larger than the sample size n.

Aided by the Hilbert–Schmidt norm of functions, we introduce a new class of func-

tional thresholding operators that combine functional versions of thresholding and

shrinkage, and propose the adaptive functional thresholding estimator by incorporat-

ing the variance effects of individual entries of the sample covariance function into

functional thresholding. To handle the practical scenario where curves are partially

observed with errors, we also develop a nonparametric smoothing approach to obtain

the smoothed adaptive functional thresholding estimator and its binned implementa-

tion to accelerate the computation. We investigate the theoretical properties of our

proposals when p grows exponentially with n under both fully and partially observed

functional scenarios. Finally, we demonstrate that the proposed adaptive functional

thresholding estimators significantly outperform the competitors through extensive

simulations and the functional connectivity analysis of two neuroimaging datasets.

Keywords: Binning; High-dimensional functional data; Functional connectivity; Functional

sparsity; Local linear smoothing; Partially observed functional data.
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1 Introduction

The covariance function estimation plays an important role in functional data analysis,

while existing methods are restricted to data with a single or small number of random

functions. Recent advances in technology have made multivariate or even high-dimensional

functional datasets increasingly common in various applications: e.g., time-course gene

expression data in genomics (Storey et al., 2005), air pollution data in environmental

studies (Kong et al., 2016) and different types of brain imaging data in neuroscience (Li and

Solea, 2018; Qiao et al., 2019). Under such scenarios, suppose we observe n independent

samples Xip¨q “ tXi1p¨q, . . . , Xipp¨qu
T for i “ 1, . . . , n defined on a compact interval U with

covariance function

Σpu, vq “ tΣjkpu, vqupˆp “ covtXipuq,Xipvqu, u, v P U .

From a heuristic interpretation, we can simply treat each curve Xijp¨q as an infinitely

long vector and replace the pj, kqth entry of Σ by Σjkp¨, ¨q “ covtXijp¨q, Xikp¨qu, the cross-

covariance matrix of two infinitely long vectors. Then Σ can be understood as a block

matrix with infinite sizes and its pj, kqth block being Σjkp¨, ¨q. Besides being of interest

in itself, an estimator of Σ is useful for many applications including, e.g., multivariate

functional principal components analysis (FPCA) (Happ and Greven, 2018), multivariate

functional linear regression (Chiou et al., 2016), functional factor model (Guo et al., 2022)

and functional classification (Park et al., 2021). See Section 2.3 for details.

Our paper focuses on estimating Σ under high-dimensional scaling, where p can be

comparable to, or even larger than n. In this setting, the sample covariance function

pΣpu, vq “ tpΣjkpu, vqupˆp “
1

n´ 1

n
ÿ

i“1

tXipuq ´ sXpuqutXipvq ´ sXpvquT, u, v P U ,

where sXp¨q “ n´1
řn
i“1 Xip¨q, performs poorly, and some lower-dimensional structural as-

sumptions need to be imposed to estimate Σ consistently. In contrast to extensive work on

estimating high-dimensional sparse covariance matrices (Bickel and Levina, 2008; Rothman
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et al., 2009; Cai and Liu, 2011; Chen and Leng, 2016; Avella-Medina et al., 2018; Wang

et al., 2021), research on sparse covariance function estimation in high dimensions remains

largely unaddressed in the literature.

In this paper, we consider estimating sparse covariance functions via adaptive func-

tional thresholding in the sense of shrinking some blocks pΣjkp¨, ¨q’s in an adaptive way.

To achieve this, we introduce a new class of functional thresholding operators that com-

bine functional versions of thresholding and shrinkage based on the Hilbert-Schmidt norm

of functions, and develop an adaptive functional thresholding procedure on pΣp¨, ¨q using

entry-dependent functional thresholds that automatically adapt to the variability of blocks

pΣjkp¨, ¨q’s. To provide theoretical guarantees of our method under high-dimensional scaling,

it is essential to develop standardized concentration results taking into account the vari-

ability adjustment. Compared with adaptive thresholding for non-functional data (Cai and

Liu, 2011), the intrinsic infinite-dimensionality of each Xijp¨q leads to a substantial rise in

the complexity of sparsity modeling and theoretical analysis, as one needs to rely on some

functional norm of standardized pΣjk’s, e.g., the Hilbert–Schmidt norm, to enforce the func-

tional sparsity in pΣ and tackle more technical challenges for standardized processes within

an abstract Hilbert space. To handle the practical scenario where functions are partially

observed with errors, it is desirable to apply nonparametric smoothers in conjunction with

adaptive functional thresholding. This poses a computationally intensive task especially

when p is large, thus calling for the development of fast implementation strategy.

There are many applications of the proposed sparse covariance function estimation

method in neuroimaging analysis, where brain signals are measured over time at a large

number of regions of interest (ROIs) for individuals. Examples include the brain-computer

interface classification (Lotte et al., 2018) and the brain functional connectivity identifi-

cation (Rogers et al., 2007). Traditional neuroimaging analysis models brain signals for

each subject as multivariate random variables, where each ROI is represented by a ran-

dom variable, and hence the covariance/correlation matrices of interest are estimated by
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treating the time-course data of each ROI as repeated observations. However, due to the

non-stationary and dynamic features of signals (Chang and Glover, 2010), the strategy of

averaging over time fails to characterize the time-varying structure leading to the loss of

information in the original space. To overcome these drawbacks, we follow recent proposals

to model signals directly as multivariate random functions with each ROI represented by a

random function (Li and Solea, 2018; Qiao et al., 2019; Zapata et al., 2022; Lee et al., 2021).

The identified functional sparsity pattern in our estimate of Σ can be used to recover the

functional connectivity network among different ROIs, which is illustrated using examples

of functional magnetic resonance imaging (fMRI) datasets in Section 6 and Section E.3 of

the Supplementary Material.

Our paper makes useful contributions at multiple fronts. On the method side, it gener-

alizes the thresholding/sparsity concept in multivariate statistics to the functional setting

and offers a novel adaptive functional thresholding proposal to handle the heteroscedastic

problem of the sparse covariance function estimation motivated from neuroimaging analysis

and many statistical applications, e.g., those in Section 2.3 and Section C.2 of the Sup-

plementary Material. It also provides an alternative way of identifying correlation-based

functional connectivity with no need to specify the correlation function, the estimation of

which poses challenges as the inverses of Σjjpu, vq’s are unbounded. In practice when func-

tions are observed with errors at either a dense grid of points or a small subset of points,

we also develop a unified local linear smoothing approach to obtain the smoothed adaptive

functional thresholding estimator and its fast implementation via binning (Fan and Mar-

ron, 1994) to speed up the computation without sacrificing the estimation accuracy. On the

theory side, we show that the proposed estimators enjoy the convergence and support re-

covery properties under both fully and partially observed functional scenarios when p grows

exponentially fast relative to n. The proof relies on tools from empirical process theory

due to the infinite-dimensional nature of functional data and some novel standardized con-

centration bounds in the Hilbert–Schmidt norm to deal with issues of high-dimensionality
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and variance adjustment. Our theoretical results and adopted techniques are general, and

can be applied to other settings in high-dimensional functional data analysis.

The remainder of this paper is organized as follows. Section 2 introduces a class of func-

tional thresholding operators, based on which we propose the adaptive functional thresh-

olding of the sample covariance function. We then discuss a couple of applications of the

sparse covariance function estimation. Section 3 presents convergence and support recovery

analysis of our proposed estimator. In Section 4, we develop a nonparametric smoothing

approach and its binned implementation to deal with partially observed functional data,

and then investigate its theoretical properties. In Sections 5 and 6, we demonstrate the

uniform superiority of the adaptive functional thresholding estimators over the universal

counterparts through an extensive set of simulation studies and the functional connectivity

analysis of a neuroimaging dataset, respectively. All technical proofs are relegated to the

Supplementary Material. We also provide the codes to reproduce the results for simulations

and real data analysis in supplementary materials.

2 Methodology

2.1 Functional thresholding

We begin by introducing some notation. Let L2pUq denotes a Hilbert space of square

integrable functions defined on U and S “ L2pUqbL2pUq, where b is the Kronecker product.

For any Q P S, we denote its Hilbert–Schmidt norm by }Q}S “ t
ş ş

Qpu, vq2dudvu1{2. With

the aid of Hilbert–Schmidt norm, for any regularization parameter λ ě 0, we first define a

class of functional thresholding operators sλ : SÑ S that satisfy the following conditions:

(i) }sλpZq}S ď c}Y }S for all Z and Y P S that satisfy }Z ´ Y }S ď λ and some c ą 0;

(ii) }sλpZq}S “ 0 for }Z}S ď λ;

(iii) }sλpZq ´ Z}S ď λ for all Z P S.
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Our proposed functional thresholding operators can be viewed as the functional generaliza-

tion of thresholding operators (Cai and Liu, 2011). Instead of a simple pointwise extension

of such thresholding operators under functional domain, we advocate a global thresholding

rule based on the Hilbert–Schmidt norm of functions that encourages the functional spar-

sity, in the sense that sλpZqpu, vq “ 0, for all u, v P U , if }Z}S ď λ under condition (ii).

Condition (iii) limits the amount of (global) functional shrinkage in the Hilbert–Schmidt

norm to be no more than λ.

Conditions (i)–(iii) are satisfied by functional versions of some commonly adopted

thresholding rules, which are introduced as solutions to the following penalized quadratic

loss problem with various penalties:

sλpZq “ arg min
θPS

"

1

2
}θ ´ Z}2S ` pλpθq

*

(1)

with pλpθq “ p̃λp}θ}Sq being a penalty function of }θ}S to enforce the functional sparsity.

The soft functional thresholding rule results from solving (1) with an `1{`2 type of

penalty, pλpθq “ λ}θ}S , and takes the form of sSλpZq “ Zp1 ´ λ{}Z}Sq`, where pxq` “

maxpx, 0q for x P R. This rule can be viewed as a functional generalization of the group

lasso solution under the multivariate setting (Yuan and Lin, 2006). To solve (1) with an

`0{`2 type of penalty, pλpθq “ 2´1λ2Ip}θ}S ‰ 0q, we obtain hard functional threhsolding

rule as ZIp}Z}S ě λq, where Ip¨q is an indicator function. As a comparison, soft func-

tional thresholding corresponds to the maximum amount of functional shrinkage allowed

by condition (iii), whereas no shrinkage results from hard functional thresholding. Taking

the compromise between soft and hard functional thresholding, we next propose functional

versions of SCAD (Fan and Li, 2001) and adaptive lasso (Zou, 2006) thresholding rules.

With a SCAD penalty (Fan and Li, 2001) operating on } ¨ }S instead of | ¨ | for the uni-

variate scalar case, SCAD functional thresholding sSCλ pZq is the same as soft functional

thresholding if }Z}S ă 2λ, and equals Ztpa ´ 1q ´ aλ{}Z}Su{pa ´ 2q for }Z}S P r2λ, aλs

and Z if }Z}S ą aλ, where a ą 2. Analogously, adaptive lasso functional thresholding rule

is sAL
λ pZq “ Zp1´ λη`1{}Z}η`1

S q` with η ě 0.
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Our proposed functional generalizations of soft, SCAD and adaptive lasso thresholding

rules can be checked to satisfy conditions (i)–(iii), see Section B.1 of the Supplementary

Material for details. To present a unified theoretical analysis, we focus on functional thresh-

olding operators sλpZq satisfying conditions (i)–(iii). Note that, although the hard func-

tional thresholding does not satisfy condition (i), theoretical results in Section 3 still hold

for hard functional thresholding estimators under similar conditions with corresponding

proofs differing slightly. For examples of functional data with some local spikes, one may

possibly suggest supremum-norm-based class of functional thresholding operators. See the

detailed discussion in Section C.1 of the Supplementary Material.

2.2 Estimation

We now discuss our estimation procedure based on sλpZq. Note the variance of pΣjkpu, vq de-

pends on the distribution of tXijpuq, Xikpvqu through higher-order moments, which is intrin-

sically a heteroscedastic problem. Hence it is more desirable to use entry-dependent func-

tional thresholds that automatically takes into account the variability of blocks pΣjkp¨, ¨q’s

to shrink some blocks to zero adaptively. To achieve this, define the variance factors

Θjkpu, vq “ var
`

rXijpuq ´ EtXijpuqusrXikpvq ´ EtXikpvqus
˘

with corresponding estimators

pΘjkpu, vq “
1

n

n
ÿ

i“1

”

 

Xijpuq ´ sXjpuq
( 

Xikpvq ´ sXkpvq
(

´ pΣjkpu, vq
ı2

, j, k “ 1, . . . , p.

Then the adaptive functional thresholding estimator pΣA “ tpΣ
A
jkp¨, ¨qupˆp is defined by

pΣA

jk “
pΘ

1{2
jk ˆ sλ

˜

pΣjk

pΘ
1{2
jk

¸

, (2)

which uses a single threshold level to functionally threshold standardized entries, pΣjk{pΘ
1{2
jk

for all j, k, resulting in entry-dependent functional thresholds for pΣjk’s. The selection of

the optimal regularization parameter λ̂ is discussed in Section 5.

An alternative approach to estimate Σ is the universal functional thresholding estimator

pΣU “ tpΣ
U

jkp¨, ¨qupˆp with pΣU

jk “ sλ
`

pΣjk

˘

,
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where a universal threshold level is used for all entries. In a similar spirit to Rothman

et al. (2009), the consistency of pΣU requires the assumption that marginal-covariance func-

tions are uniformly bounded in nuclear norm, i.e., maxj }Σjj}N ď M, where }Σjj}N “

ş

U Σjjpu, uqdu. However, intuitively, such universal method does not perform well when nu-

clear norms vary over a wide range, or even fails when the uniform boundedness assumption

is violated. Section 5 provides some empirical evidence to support this intuition.

2.3 Applications

Many statistical problems involving multivariate functional data tXip¨qu
n
i“1 require estimat-

ing the covariance function Σ. Under a high-dimensional regime, the functional sparsity

assumption can be imposed on Σ to facilitate its consistent sparse estimates. Here we

outline three applications of our proposals for the sparse covariance function estimation.

Our first application is multivariate FPCA serving as a natural dimension reduction

approach for Xip¨q. With the aid of Karhunen-Loéve expansion for multivariate functional

data (Happ and Greven, 2018), Xip¨q admits the following expansion

Xip¨q “ EtXip¨qu `

8
ÿ

l“1

ξilφlp¨q, i “ 1, . . . , n, (3)

where the principal component scores ξil “
řp
j“1

ş

rXijpuq ´ EtXijpuqusφljpuqdu and eigen-

functions φlp¨q “ tφl1p¨q, . . . , φlpp¨qu
T are attainable by the eigenanalysis of Σ. Under a large

p scenario, we can adopt the proposed functional thresholding technique to obtain the sparse

estimation of Σ, which guarantees the consistencies of estimated eigenvalues/eigenfunctions

pairs. In Section E.1 of the Supplementary Material, we follow the proposal of a normalized

version of multivariate FPCA in Happ and Greven (2018) and use a simulated example to

illustrate the superior sample performance of our functional thresholding approaches.

Our second application, multivariate functional linear regression (Chiou et al., 2016),

takes the form of

Yi “ β0 `

ż

U
Xipuq

Tβpuqdu` εi, i “ 1, . . . , n, (4)
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where βp¨q “ tβ1p¨q, . . . , βpp¨qu
T is p-vector of functional coefficients to be estimated. The

standard three-step procedure involves performing (normalized) multivariate FPCA on

Xip¨q’s based on pΣ, then estimating the basis coefficients vector of βp¨q and finally recovering

the estimated functional coefficients, where details are presented in Section E.1 of the

Supplementary Material and Chiou et al. (2016). When p is large, we can implement our

functional thresholding proposals to obtain consistent estimators of Σ and hence β. In

Section E.1 of the Supplementary Material, we demonstrate via a simulated example the

superiority of our adaptive-functional-thresholding-based estimator over its competitors.

Our third application considers another dimension reduction framework via functional

factor model (Guo et al., 2022) in the form of Xip¨q “ Afip¨q ` εip¨q, where the com-

mon components are driven by r functional factors fip¨q “ tfi1p¨q, . . . , firp¨qu
T, the id-

iosyncratic components are εip¨q and A P Rpˆr is the factor loading matrix. Denote

the covariance functions of Xip¨q, fip¨q and εip¨q by ΣX , Σf and Σε, respectively. Un-

der the orthogonality of A,
ş ş

ΣXpu, vqΣXpu, vq
Tdudv can be decomposed as the sum of

A
ş ş

Σf pu, vqΣf pu, vq
TdudvAT and the remaining smaller order terms. Intuitively, with

certain identifiable conditions, A can be recovered by carrying out an eigenanalysis of
ş ş

ΣXpu, vqΣXpu, vq
Tdudv. To provide a parsimonious model and enhance interpretability

for near-zero loadings, we can impose subspace sparsity conditions (Vu and Lei, 2013) on

A that results in a functional sparse ΣX and hence our functional thresholding estimators

become applicable. See an application of our functional thresholding technique to improve

the estimation quality when fitting sparse functional factor model in Guo et al. (2022). See

also Section C.2 of the Supplementary Material for other applications including functional

graphical model estimation (Qiao et al., 2019) and multivariate functional classification.

3 Theoretical properties

We begin with some notation. For a random variable W, define }W }ψ “ inf
 

c ą 0 :

Erψp|W |{cqs ď 1
(

, where ψ : r0,8q Ñ r0,8q is a nondecreasing, nonzero convex function
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with ψp0q “ 0 and the norm takes the value8 if no finite c exists for which Erψp|W |{cqs ď 1.

Denote ψkpxq “ exppxkq ´ 1 for k ě 1. Let the packing number Dpε, dq be the maximal

number of points that can fit in the compact interval U while maintaining a distance greater

than ε between all points with respect to the semimetric d. We refer to Chapter 8 of Kosorok

(2008) for further explanations. For tXijpuq : u P U , i “ 1, . . . , n, j “ 1, . . . , pu, define the

standardized processes by Yijpuq “ rXijpuq ´EtXijpuqus{σjpuq
1{2, where σjpuq “ Σjjpu, uq.

To present the main theorems, we need the following regularity conditions.

Condition 1 (i) For each i and j, Yijp¨q is a separable stochastic process with the semimet-

ric djpu, vq “ }Y1jpuq ´ Y1jpvq}ψ2 for u, v P U ; (ii) For some u0 P U , max1ďjďp }Y1jpu0q}ψ2

is bounded.

Condition 2 The packing numbers Dpε, djq’s satisfy max1ďjďpDpε, djq ď Cε´r for some

constants C, r ą 0 and ε P p0, 1s.

Condition 3 There exists some constant τ ą 0 such that minj,k infu,vPU var
 

Y1jpuqY1kpvq
(

ě

τ.

Condition 4 The pair pn, pq satisfies log p{n1{4 Ñ 0 as n and pÑ 8.

Conditions 1 and 2 are standard to characterize the modulus of continuity of sub-

Gaussian processes Yijp¨q’s, see Chapter 8 of Kosorok (2008). These conditions also imply

that there exist some positive constants C0 and η such that Erexppt}Y1j}
2qs ď C0 for

all |t| ď η and j with }Y1j} “ t
ş

U Y1jpuq
2duu1{2, which plays a crucial role in our proof

when applying concentration inequalities within Hilbert space. Condition 3 restricts the

variances of YijpuqYikpvq’s to be uniformly bounded away from zero so that they can be

well estimated. It also facilitates the development of some standardized concentration

results. This condition precludes the case of a Brownian motion Xijp¨q starting at 0 for

some j. However, replacing Xijp¨q with a contaminated process Xijp¨q ` ξij, where ξij’s

are independent from a normal distribution with zero mean and a small variance and are
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independent of Xijp¨q’s, Condition 3 is fulfilled while the cross-covariance structure in Σ

remains the same in the sense of covtXijpuq ` ξij, Xikpvqu “ covtXijpuq, Xikpvqu for k ‰ j

and u, v P U . Condition 4 allows the high-dimensional case, where p can diverge at some

exponential rate as n increases.

We next establish the convergence rate of the adaptive functional thresholding estimator

pΣA over a large class of “approximately sparse” covariance functions defined by

Cpq, s0ppq, ε0;Uq “

!

Σ : Σ ľ 0, max
1ďjďp

p
ÿ

k“1

}σj}
p1´qq{2
8 }σk}

p1´qq{2
8 }Σjk}

q
S ď s0ppq,

max
j
}σ´1

j }8}σj}8 ď ε´1
0 ă 8

)

for some 0 ď q ă 1, where }σj}8 “ supuPU σjpuq and Σ ľ 0 means that Σ “ tΣjkp¨, ¨qupˆp

is positive semidefinite, i.e.,
ř

j,k

ş ş

Σjkpu, vqajpuqakpvqdudv ě 0 for any ajp¨q P L2pUq

and j “ 1, . . . , p. See Cai and Liu (2011) for a similar class of covariance matrices for

non-functional data. Compared with the class

C˚pq, s0ppq,M ;Uq “
 

Σ : Σ ľ 0,max
j
}σj}N ďM,max

j

p
ÿ

k“1

}Σjk}
q
S ď s0ppq

(

,

over which the universal functional thresholding estimator pΣU can be shown to be consis-

tent, the columns of a covariance function in Cpq, s0ppq, ε0;Uq are required to be within a

weighted `q{`2 ball instead of a standard `q{`2 ball, where the weights are determined by

}σj}8’s. Unlike C˚pq, s0ppq,M ;Uq, Cpq, s0ppq, ε0;Uq no longer requires the uniform bound-

edness assumption on }σj}N ’s and allows maxj }σj}N Ñ 8. In the special case q “ 0,

Cpq, s0ppq, ε0;Uq corresponds to a class of truly sparse covariance functions. Notably, s0ppq

can depend on p and be regarded implicitly as the restriction on functional sparsity.

Theorem 1 Suppose that Conditions 1-4 hold. Then there exists some constant δ ą 0

such that, uniformly on Cpq, s0ppq, ε0;Uq, if λ “ δplog p{nq1{2,

}pΣA ´Σ}1 “ max
1ďkďp

p
ÿ

j“1

}pΣA

jk ´ Σjk}S “ OP

"

s0ppq
´ log p

n

˙

1´q
2 )

. (5)

11



Theorem 1 presents the convergence result in the functional version of matrix `1 norm.

The rate in (5) is consistent to those of sparse covariance matrix estimates in Rothman

et al. (2009); Cai and Liu (2011).

We finally turn to investigate the support recovery consistency of pΣA over the parameter

space of truly sparse covariance functions defined by

C0ps0ppq;Uq “
!

Σ : Σ ľ 0, max
1ďjďp

p
ÿ

k“1

Ip}Σjk}S ‰ 0q ď s0ppq
)

,

which assumes that pΣjkqpˆp has at most s0ppq non-zero functional entries on each row. The

following theorem shows that, with the choice of λ “ δplog p{nq1{2 for some constant δ ą 0,

pΣA exactly recovers the support of Σ, supppΣq “ tpj, kq : }Σjk}S ‰ 0u, with probability

approaching one.

Theorem 2 Suppose that Conditions 1-4 hold and
›

›Σjk{Θ
1{2
jk

›

›

S ą p2δ ` γqplog p{nq1{2 for

all pj, kq P supppΣq and some γ ą 0, where δ is stated in Theorem 1. Then we have that

inf
ΣPC0

P
 

suppppΣAq “ supppΣq
(

Ñ 1 as nÑ 8.

Theorem 2 ensures that pΣA achieves the exact recovery of functional sparsity structure

in Σ, i.e., the graph support in functional connectivity analysis, with probability tending

to 1. This theorem holds under the condition that the Hilbert-Schmidt norms of non-zero

standardized functional entries exceed a certain threshold, which ensures that non-zero

components are correctly retained. See an analogous minimum signal strength condition

for sparse covariance matrices in Cai and Liu (2011).

4 Partially observed functional data

In this section we consider a practical scenario where each Xijp¨q is partially observed, with

errors, at random measurement locations Uij1, . . . , UijLij
P U . Let Zijl be the observed value

of XijpUijlq. Then

Zijl “ XijpUijlq ` εijl, l “ 1, . . . , Lij, (6)

12



where εijl’s are i.i.d. errors with Epεijlq “ 0 and varpεijlq “ σ2, independent of Xijp¨q.

For dense measurement designs all Lij’s are larger than some order of n, while for sparse

designs all Lij’s are bounded (Zhang and Wang, 2016; Qiao et al., 2020).

4.1 Estimation procedure

Based on the observed data, tpUijl, Zijlqu1ďiďn,1ďjďp,1ďlďLij
, we next present a unified esti-

mation procedure that handles both densely and sparsely sampled functional data.

We first develop a nonparametric smoothing approach to estimate Σjkpu, vq’s. Without

loss of generality, we assume that Xip¨q has been centered to have mean zero. Denote

Khp¨q “ h´1Kp¨{hq for a univariate kernel function K with a bandwidth h ą 0. A local

linear surface smoother (LLS) is employed to estimate cross-covariance functions Σjkpu, vq

(j ‰ k) by minimizing

n
ÿ

i“1

Lij
ÿ

l“1

Lik
ÿ

m“1

!

ZijlZikm´α0´α1pUijl´uq´α2pUikm´ vq
)2

KhC pUijl ´ uqKhC pUikm ´ vq, (7)

with respect to pα0, α1, α2q. Let the minimizer of (7) be pα̂0, α̂1, α̂2q and the resulting estima-

tor is rΣjkpu, vq “ α̂0. To estimate marginal-covariance functions Σjjpu, vq’s, we observe that

covpZijl, Zijmq “ ΣjjpUijl, Uijmq ` σ2Ipl “ mq, and hence apply a LLS to the off-diagonals

of the raw covariances pZijlZijmq1ďlďmďLij
. We consider minimizing

n
ÿ

i“1

ÿ

1ďl‰mďLij

!

ZijlZijm ´ β0 ´ β1pUijl ´ uq ´ β2pUikm ´ vq
)2

KhM pUijl ´ uqKhM pUikm ´ vq

with respect to pβ0, β1, β2q, thus obtaining the estimate rΣjjpu, vq “ β̂0. Note that we drop

subscripts j, k of hC,jk and j of hM,j to simplify our notation in this section. However, we

select different bandwidths hC,jk and hM,j across j, k “ 1, . . . , p in our empirical studies.

To construct the corresponding adaptive functional thresholding estimator, a standard

approach is to incorporate the variance effect of each rΣjkpu, vq into functional thresholding.

However, the estimation of vartrΣjkpu, vqu’s involves estimating multiple complicated fourth

moment terms (Zhang and Wang, 2016), which results in high computational burden es-

pecially for large p. Since our focus is on characterizing the main variability of rΣjkpu, vq
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rather than estimating its variance precisely, we next develop a computationally simple yet

effective approach to estimate the main terms in the asymptotic variance of rΣjkpu, vq. For

a, b “ 0, 1, 2, let

Tab,ijkpu, vq “

Lij
ÿ

l“1

Lik
ÿ

m“1

gabthC , pu, vq, pUijl, UikmquZijlZikm, (8)

where gab
 

h, pu, vq, pUijl, Uikmq
(

“ KhpUijl ´ uqKhpUikm ´ vqpUijl´uq
apUikm´vq

b. Accord-

ing to Section D.1 of the Supplementary Material, minimizing (7) yields the resulting

estimator

rΣjk “

n
ÿ

i“1

`

W1,jkT00,ijk `W2,jkT10,ijk `W3,jkT01,ijk

˘

, (9)

where W1,jk,W2,jk,W3,jk can be represented via (S.12) in terms of

Sab,jkpu, vq “
n
ÿ

i“1

Lij
ÿ

l“1

Lik
ÿ

m“1

gab
 

hC , pu, vq, pUijl, Uikmq
(

, a, b “ 0, 1, 2. (10)

It is notable that the estimator rΣjk in (9) is expressed as the sum of n independent terms.

Ignoring the cross-covariances among observations within the subject that are dominated by

the corresponding variances, we propose a surrogate estimator for the asymptotic variance

of rΣjk by

rΨjk “ Ijk

n
ÿ

i“1

`

W1,jkV00,ijk `W2,jkV10,ijk `W3,jkV01,ijk

˘2
, (11)

where

Ijk “
´

n
ÿ

i“1

LijLik

¯2! n
ÿ

i“1

`

LijLikh
´2
C ` L2

ijLikh
´1
C ` LijL

2
ikh

´1
C ` L2

ijL
2
ik

˘

)´1

, (12)

Vab,ijkpu, vq “

Lij
ÿ

l“1

Lik
ÿ

m“1

gab
 

hC , pu, vq, pUijl, Uikmq
( 

ZijlZikm ´ rΣjkpu, vq
(

. (13)

The rationale of multiplying the rate Ijk in (11) is to ensure that rΨjkpu, vq converges to some

finite function when n Ñ 8 and hC Ñ 0 as justified in Section D.4 of the Supplementary

Material. In particular, the rate Ijk can be simplified to
řn
i“1 LijLikh

2
C for the sparse or

moderately dense case and to p
řn
i“1 LijLikq

2p
řn
i“1 L

2
ijL

2
ikq
´1 for the very dense case. Note

that Ijk is imposed in (11) mainly for the theoretical purpose and hence will not place a

practical constraint on our method.
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In a similar procedure as above, the estimated variance factor rΨjj of rΣjj for each j can be

obtained by operating on tZijlZijmu1ďiďn,1ďl‰mďLij
instead of tZijlZikmu1ďiďn,1ďlďLij ,1ďmďLik

for j ‰ k. Substituting pΘjk in (2) by rΨjk, we obtain the smoothed adaptive functional

thresholding estimator

rΣA “ prΣ
A

jkqpˆp with rΣA

jk “
rΨ

1{2
jk ˆ sλ

˜

rΣjk

rΨ
1{2
jk

¸

. (14)

For comparison, we also define the smoothed universal functional thresholding estimator

as rΣU “ prΣ
U
jkqpˆp with rΣU

jk “ sλ
`

rΣjk

˘

.

A natural alternative to the proposed LLS-based smoothing procedure considers pre-

smoothing each individual data. For densely sampled functional data, the observations

Zij1, . . . , ZijLij
for each i and j can be pre-smoothed through the local linear smoother

to eliminate the contaminated noise, thus producing reconstructed random curves pXijp¨q’s

before subsequent analysis (Zhang and Chen, 2007). See detailed implementation of pre-

smoothing in Section D.2 of the Supplementary Material. For sparsely sampled functional

data, such pre-smoothing step is not viable, while our smoothing proposal builds strength

across functions by incorporating information from all the observations, and hence is still

applicable. See also Section 5.3 for the numerical comparison between pre-smoothing and

our smoothing approach under different measurement designs.

4.2 Theoretical properties

In this section, we investigate the theoretical properties of rΣA for partially observed func-

tional data. We begin by introducing some notation. For two positive sequences tanu and

tbnu, we write an À bn if there exits a positive constant c0 such that an{bn ď c0. We write

an — bn if and only if an À bn and bn À an hold simultaneously. Before presenting the

theory, we impose the following regularity conditions.

Condition 5 (i) Let
 

Uijl : i “ 1, . . . , n, j P 1, . . . , p, l “ 1, . . . , Lij
(

be i.i.d. copies of a

random variable U with density fUp¨q defined on the compact set U , with the Lij’s fixed.
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There exist some constants mf and Mf such that 0 ă mf ď infUfUpuq ď supUfUpuq ď

Mf ă 8; (ii) Xij, εijl and Uijl are independent for each i, j, l.

Condition 6 (i) Under the sparse measurement design, Lij ď L0 ă 8 for all i, j and,

under the dense design, Lij “ L Ñ 8 as n Ñ 8 with Uijl’s independent of i; (ii) The

bandwidth parameters hC — hM — hÑ 0 as nÑ 8.

Condition 5 is standard in functional data analysis literature (Zhang and Wang, 2016).

Condition 6 (i) treats the number of measurement locations Lij as bounded and diverging

under sparse and dense measurement designs, respectively. To simplify notation, we assume

that Lij “ L for the dense case and hC is of the same order as hM in Condition 6 (ii).

Condition 7 There exists some constant γ1 P p0, 1{2s such that

max
1ďj,kďp

›

›

›

rΣjk ´ Σjk

›

›

›

S
À

c

log p

n2γ1
` h2 with probability approaching one. (15)

Condition 8 There exist some positive constants c1, γ2 P p0, 1{2s and some deterministic

functions Ψjkpu, vq’s with minj,k infu,vPU Ψjkpu, vq ě c1 such that

max
1ďj,kďp

sup
u,vPU

ˇ

ˇ

ˇ

rΨjkpu, vq ´Ψjkpu, vq
ˇ

ˇ

ˇ
À

c

log p

n2γ2
` h2 with probability approaching one. (16)

Condition 9 The pair pn, pq satisfies log p{nminpγ1,γ2q Ñ 0 and log p ě c2n
2γ1h4 for some

positive constant c2 as n and pÑ 8.

We follow Qiao et al. (2020) to impose Condition 7, in which the parameter γ1 depends

on h and possibly L under the dense design. This condition is satisfied if there exist some

positive constants c3, c4, c5 such that for each j, k “ 1, . . . , p and t P p0, 1s,

P
`

}rΣjk ´ Σjk}S ě t` c5h
2
˘

ď c4 expp´c3n
2γ1t2q. (17)

The presence of h2 comes from the standard results for bias terms under the boundedness

condition for the second-order partial derivatives of Σjkpu, vq over U2 (Yao et al., 2005;

Zhang and Wang, 2016). This concentration result is fulfilled under different measurement

16



schedules ranging from sparse to dense designs as γ1 increases. For sparsely sampled func-

tional data, Lemma 4 of Qiao et al. (2020) established L2 concentration inequality for rΣjk

for j “ k, which not only results in the same L2 rate as that in the sparse case (Zhang

and Wang, 2016) but also ensures (17) with the choice of γ1 “ 1{2 ´ a and h — n´a for

some positive constant a ă 1{2. Following the same proof procedure, the same concentra-

tion inequality also applies for j ‰ k and hence Condition 7 is satisfied. This condition is

also satisfied by densely sampled functional data, since it follows from Lemma 5 of Qiao

et al. (2020) that (17) holds for j “ k and, with more efforts, also for j ‰ k by choosing

γ1 “ minp1{2, 1{3 ` b{6 ´ ε1{2 ´ 2a{3q for some small constant ε1 ą 0 when h — n´a and

L — nb for some constants a, b ą 0. As L grows sufficiently large, γ1 “ 1{2, thus leading

to the same rate as that in the ultra-dense case (Zhang and Wang, 2016). Condition 8

gives the uniform convergence rate for rΨjkpu, vq in the same form as (15) but with differ-

ent parameter γ2. A denser measurement design corresponds to a larger value of γ2 and

a faster rate in (16). See the heuristic verification of Condition 8 in Section D.4 of the

Supplementary Material. Condition 9 indicates that p can grow exponentially fast relative

to n.

We next present the convergence rate of the smoothed adaptive functional thresholding

estimator rΣA over a class of “approximate sparse” covariance functions defined by

rCpq, s̃0ppq, ε0;Uq “

!

Σ : Σ ľ 0, max
1ďjďp

p
ÿ

k“1

}Ψjk}
p1´qq{2
8 }Σjk}

q
S ď s̃0ppq,

max
j,k
}Ψ´1

jk }8}Ψjk}8 ď ε´1
0 ă 8

)

,

for some 0 ď q ă 1.

Theorem 3 Suppose that Conditions 5–9 hold. Then there exists some constants δ̃ ą 0

such that, uniformly on rCpq, s̃0ppq, ε0;Uq, if λ “ δ̃plog p{n2γ1q1{2,

}rΣA ´Σ}1 “ max
1ďkďp

p
ÿ

j“1

}rΣA

jk ´ Σjk}S “ OP

"

s̃0ppq
´ log p

n2γ1

¯
1´q
2

*

. (18)

The convergence rate of rΣA in (18) is governed by internal parameters pγ1, qq and other

dimensionality parameters. Larger values of γ1 correspond to a more frequent measurement
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schedule with larger L and result in a faster rate. The convergence result implicitly reveals

interesting phase transition phenomena depending on the relative order of L to n. As L

grows fast enough, γ1 “ 1{2 and the rate is consistent to that for fully observed functional

data in (5), presenting that the theory for very densely sampled functional data falls in the

parametric paradigm. As L grows moderately fast, γ1 ă 1{2 and the rate is faster than

that for sparsely sampled functional data but slower than the parametric rate.

We finally present Theorem 4 that guarantees the support recovery consistency of rΣA.

Theorem 4 Suppose that Conditions 5–9 hold and
›

›Σjk{Ψ
1{2
jk

›

›

S ą p2δ̃ ` γ̃qplog p{n2γ1q1{2

for all pj, kq P supppΣq and some γ̃ ą 0, where δ̃ is stated in Theorem 3, then

inf
ΣPC0

P
 

suppprΣAq “ supppΣq
(

Ñ 1 as nÑ 8.

4.3 Fast computation

Consider a common situation in practice, where, for each i “ 1, . . . , n, we observe the noisy

versions of Xi1p¨q, . . . , Xipp¨q at the same set of points, Ui1, . . . , UiLi
P U , across j “ 1, . . . , p.

Then the original model in (6) is simplified to

Zijl “ XijpUilq ` εijl, l “ 1, . . . , Li, (19)

under which the proposed estimation procedure in Section 4.1 can still be applied. Suppose

that the estimated covariance function is evaluated at a grid of RˆR locations, tpur1 , ur2q P

U2 : r1, r2 “ 1, . . . , Ru. To serve the estimation of ppp`1q{2 marginal- and cross-covariance

functions and the corresponding variance factors, LLSs under the simplified model in (19)

reduce the number of kernel evaluations from Op
řn
i“1

řp
j“1 LijRq to Op

řn
i“1 LiRq, which

substantially accelerate the computation under a high-dimensional regime.

Apparently, such nonparametric smoothing approach is conceptually simple but suffers

from high computational cost in kernel evaluations. To further reduce the computational

burden, we consider fast implementations of LLSs by adopting a simple approximation

technique, known as linear binning (Fan and Marron, 1994), to the covariance function
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estimation. The key idea of the binning method is to greatly reduce the number of kernel

evaluations through the fact that many of these evaluations are nearly the same. We start

by dividing U into an equally-spaced grid of R points, u1 ă ¨ ¨ ¨ ă uR P U , with binwidth

∆ “ u2 ´ u1. Denote by wrpUilq “ maxp1 ´ ∆´1|Uil ´ ur|, 0q the linear weight that Uil

assigns to the grid point ur for r “ 1, . . . , R. For the i-th subject, we define its “binned

weighted counts” and “binned weighted averages” as

$r,i “

Li
ÿ

l“1

wrpUilq and Dr,ij “

Li
ÿ

l“1

wrpUilqZijl,

respectively. The binned implementation of smoothed adaptive functional thresholding can

then be done using this modified dataset tp$r,i,Dr,ijqu1ďiďn,1ďjďp,1ďrďR and related kernel

functions gabth, pu, vq, pur1 , ur2qu for r1, r2 “ 1, . . . , R. It is notable that, with the help of

such binned implementation, the number of kernel evaluations required in the covariance

function estimation is further reduced from Op
řn
i“1 LiRq to OpRq, while only Op

řn
i“1 Liq

additional operations are involved for each j in the binning step (Fan and Marron, 1994).

We next illustrate the binned implementation of LLS, denoted as BinLLS, using the

example of smoothed estimates rΣjk for j ‰ k in (9). Under Model (19), we drop subscripts

j, k in W1,jk, W2,jk, W3,jk and Sab,jk due to the same set of points tUi1, . . . , UiLi
u across

j, k. Denote the binned approximations of Tab,ijk and Sab by qTab,ijk and qSab, respectively. It

follows from (8) and (10) that

qTab,ijkpu, vq “
R
ÿ

r1“1

R
ÿ

r2“1

gabthC , pu, vq, pur1 , ur2quDr1,ijDr2,ik,

qSabpu, vq “
n
ÿ

i“1

R
ÿ

r1“1

R
ÿ

r2“1

gabthC , pu, vq, pur1 , ur2qu$r1,i$r2,i,

both of which together with (9) yield the binned approximation of rΣjk as

qΣjk “

n
ÿ

i“1

`

|W1
qT00,ijk `|W2

qT10,ijk `|W3
qT01,ijk

˘

,

where |W1,|W2 and |W3 are the binned approximations of W1,W2 and W3, computed by re-

placing the related Sab’s in (S.12) of the Supplementary Material with the qSab’s. It is worth
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Table 1: The computational complexity analysis of LLS, BinLLS under Models (6), (19) when

evaluating the corresponding smoothed covariance function estimates at a grid of RˆR points.

Method Model
Number of

kernel evaluations

Number of operations

(additions and multiplications)

LLS (6) Op
řn
i“1

řp
j“1 LijRq OpR2

řn
i“1

řp
j,k“1 LijLikq

LLS (19) Op
řn
i“1 LiRq Opp2R2

řn
i“1 L

2
i q

BinLLS (19) OpRq Opnp2R2 ` p2R4 ` p
řn
i“1 Liq

noting that, for each pair pj, kq, the above binned implementation reduces the number of

operations (i.e., additions and multiplications) from OpR2
řn
i“1 L

2
i q to OpnR2 ` R4q, since

the kernel evaluations in gabthC , pu, vq, pur1 , ur2qu no longer depend on individual observa-

tions. Table 1 presents the computational complexity analysis of LLS and BinLLS under

Models (6) and (19). It reveals that the binned implementation dramatically improves the

computational speed for both densely and sparsely sampled functional data, which is also

supported by the empirical evidence in Section 5.3.

To aid the binned implementation of the smoothed adaptive functional thresholding

estimator, we then derive the binned approximation of the variance factor rΨjk, denoted by

qΨjk. It follows from (13) that Vab,ijk can be approximated by

qVab,ijkpu, vq “
R
ÿ

r1“1

R
ÿ

r2“1

gab
`

hC , pu, vq, pur1 , ur2q
˘ 

Dr1,ijDr2,ik ´
qΣjkpu, vq$r1,i$r2,i

(

.

Substituting each term in (11) with its binned approximation, we obtain that

qΨjk “ Ijk

n
ÿ

i“1

`

|W1
qV00,ijk `|W2

qV10,ijk `|W3
qV01,ijk

˘2
.

It is worth mentioning that, when j “ k, the binned approximations of rΣjj and rΨjj can

be computed in a similar fashion except that the terms corresponding to r1 “ r2 should

be excluded from all double summations over t1, . . . , Ru2. Finally, we obtain the binned

adaptive functional thresholding estimator qΣA “ pqΣ
A
jkqpˆp with qΣA

jk “
qΨ

1{2
jk ˆ sλ

`

qΣjk{qΨ
1{2
jk

˘

and the corresponding universal thresholding estimator qΣU “ pqΣ
U
jkqpˆp with qΣU

jk “ sλ
`

qΣjk

˘

.
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5 Simulations

5.1 Setup

We conduct a number of simulations to compare adaptive functional thresholding estima-

tors to universal functional thresholding estimators. Sections 5.2 and 5.3 consider scenarios

where random functions are fully and partially observed, respectively.

In each scenario, to mimic the infinite-dimensionality of random curves, we generate

functional variables by Xijpuq “ spuqTθij for i “ 1, . . . , n, j “ 1, . . . , p and u P U “ r0, 1s,

where spuq is a 50-dimensional Fourier basis function and θi “ pθT

i1, . . . ,θ
T

ipq
T P R50p is

generated from a mean zero multivariate Gaussian distribution with block covariance matrix

Ω P R50pˆ50p, whose pj, kq-th block is Ωjk P R50ˆ50 for j, k “ 1, . . . , p. The functional

sparsity pattern in Σ “ tΣjkp¨, ¨qupˆp with its pj, kqth entry Σjkpu, vq “ spuqTΩjkspvq can

be characterized by the block sparsity structure in Ω. Define Ωjk “ ωjkD with D “

diagp1´2, . . . , 50´2q and hence covpθijk, θijk1q „ k´2Ipk “ k1q for k, k1 “ 1, . . . , 50. Then we

generate Ω with different block sparsity patterns as follows.

• Model 1 (block banded). For j, k “ 1, . . . , p{2, ωjk “ p1 ´ |j ´ k|{10q`. For j, k “

p{2` 1, . . . , p, ωjk “ 4Ipj “ kq.

• Model 2 (block sparse without any special structure). For j, k “ p{2`1, . . . , p, ωjk “

4Ipj “ kq. For j, k “ 1, . . . , p{2, we generate ω “ pωjkqp{2ˆp{2 “ B ` δ1Ip{2, where

elements of B are sampled independently from Uniformr0.3, 0.8s with probability 0.2

or 0 with probability 0.8, and δ1 “ maxt´λminpBq, 0u`0.01 to guarantee the positive

definiteness of Ω.

We implement a cross-validation approach (Bickel and Levina, 2008) for choosing the

optimal thresholding parameter λ̂ in pΣA. Specifically, we randomly divide the sample

tXi : i “ 1, . . . , nu into two subsamples of size n1 and n2, where n1 “ np1 ´ 1{ log nq and

n2 “ n{ log n and repeat this N times. Let pΣ
pνq

A,1pλq and pΣ
pνq

S,2 be the adaptive functional
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thresholding estimator as a function of λ and the sample covariance function based on n1

and n2 observations, respectively, from the νth split. We select the optimal λ̂ by minimizing

xerrpλq “ N´1
N
ÿ

ν“1

}pΣ
pνq

A,1pλq ´
pΣ
pνq

S,2}
2
F,

where }¨}F denotes the functional version of Frobenius norm, i.e., for anyQ “ tQjkp¨, ¨qupˆp

with each Qjk P S, }Q}F “ p
ř

j,k }Qjk}
2
Sq

1{2. The optimal thresholding parameters in pΣU,

rΣA, rΣU, qΣA, qΣU can be selected in a similar fashion.

5.2 Fully observed functional data

We compare the adaptive functional thresholding estimator pΣA to the universal functional

thresholding estimator pΣU under hard, soft, SCAD (with a “ 3.7) and adaptive lasso

(with η “ 3) functional thresholding rules, where the corresponding λ̂’s are selected by

the cross-validation with N “ 5. We generate n “ 100 observations for p “ 50, 100, 150

and replicate each simulation 100 times. We examine the performance of all competing

approaches by estimation and support recovery accuracies. In terms of the estimation

accuracy, Table 2 reports numerical summaries of losses measured by functional versions of

Frobenius and matrix `1 norms. To assess the support recovery consistency, we present in

Table 3 the average of true positive rates (TPRs) and false positive rates (FPRs), defined as

TPR “ #tpj, kq : }pΣjk}S ‰ 0 and }Σjk}S ‰ 0u{#tpj, kq : }Σjk}S ‰ 0u and FPR “ #tpj, kq :

}pΣjk}S ‰ 0 and }Σjk}S “ 0u{#tpj, kq : }Σjk}S “ 0u. Since the results under Models 1 and

2 have similar trends, we only present the numerical results under Model 2 here to save

space. See Tables 9 and 10 of the Supplementary Material for results under Model 1.

Several conclusions can be drawn from Tables 2–3 and 9–10. First, in all scenarios,

pΣA provides substantially improved accuracy over pΣU regardless of the thresholding rule

or the loss used. We also obtain the sample covariance function pΣS, the results of which

deteriorate severely compared with pΣA and pΣU. Second, for support recovery, again pΣA

uniformly outperforms pΣU, which fails to recover the functional sparsity pattern especially

when p is large. Third, the adaptive functional thresholding approach using the hard
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Table 2: The average (standard error) functional matrix losses over 100 simulation runs.

p “ 50 p “ 100 p “ 150

Model Method pΣA
pΣU

pΣA
pΣU

pΣA
pΣU

2

Functional Frobenius norm

Hard 5.67(0.03) 9.39(0.02) 9.48(0.04) 15.79(0.01) 14.00(0.05) 22.26(0.01)

Soft 6.14(0.03) 8.55(0.04) 10.28(0.05) 15.00(0.05) 14.8(0.05) 21.89(0.04)

SCAD 5.94(0.03) 8.59(0.04) 9.96(0.05) 15.02(0.05) 14.49(0.06) 21.91(0.04)

Adap. lasso 5.44(0.03) 9.10(0.04) 8.99(0.04) 15.73(0.02) 13.02(0.05) 22.25(0.01)

Sample 21.80(0.04) 43.51(0.06) 65.22(0.07)

Functional matrix `1 norm

Hard 2.85(0.03) 4.74(0.01) 4.77(0.05) 7.11(0.01) 7.65(0.07) 10.31(0.01)

Soft 3.31(0.03) 4.51(0.04) 5.37(0.04) 6.90(0.02) 8.21(0.05) 10.21(0.01)

SCAD 3.22(0.03) 4.48(0.03) 5.29(0.04) 6.91(0.02) 8.14(0.05) 10.21(0.01)

Adap. lasso 2.75(0.03) 4.66(0.02) 4.62(0.05) 7.08(0.01) 7.35(0.07) 10.30(0.01)

Sample 28.06(0.12) 56.01(0.19) 84.13(0.23)

Table 3: The average TPRs/ FPRs over 100 simulation runs.

p “ 50 p “ 100 p “ 150

Model Method pΣA
pΣU

pΣA
pΣU

pΣA
pΣU

2

Hard 0.77/0.00 0.00/0.00 0.68/0.00 0.00/0.00 0.63/0.00 0.00/0.00

Soft 0.99/0.06 0.50/0.07 0.97/0.04 0.30/0.04 0.96/0.04 0.11/0.02

SCAD 0.99/0.06 0.47/0.06 0.98/0.05 0.29/0.04 0.97/0.05 0.10/0.01

Adap. lasso 0.91/0.00 0.10/0.01 0.86/0.00 0.01/0.00 0.83/0.00 0.00/0.00

and the adaptive lasso functional thresholding rules tends to have lower losses and lower

TPRs/FPRs than that using the soft and the SCAD functional thresholding rules.

5.3 Partially observed functional data

In this section, we assess the finite-sample performance of LLS and BinLLS methods

to handle partially observed functional data. We first generate random functions Xijp¨q

for i “ 1, . . . , n, j “ 1, . . . , p by the same procedure as in Section 5.1 with either non-

sparse or sparse Σ depending on p. We then generate the observed values Zijl from equa-
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tion (19), where the measurement locations Uil and errors εijl are sampled independently

from Uniform[0,1] and N p0, 0.52q, respectively. We consider settings of n “ 100 and

Li “ 11, 21, 51, 101, changing from sparse to moderately dense to very dense measure-

ment schedules. We use the Gaussian kernel with the optimal bandwidths proportional to

n´1{6, pnL2
i q
´1{6 and n´1{4, respectively, as suggested in Zhang and Wang (2016), so for the

empirical work in this paper we choose the proportionality constants in the range p0, 1s,

which gives good results in all settings we consider.

To compare BinLLS with LLS in terms of the computational speed and estimation ac-

curacy, we first consider a low-dimensional example p “ 6 with non-sparse Σ generated by

modifying Model 1 with ωjk “ p1´ |j ´ k|{10q` for j, k “ 1, . . . , 6. In addition to our pro-

posed smoothing methods, we also implement local-linear-smoother-based pre-smoothing

and its binned implementation, denoted as LLS-P and BinLLS-P, respectively. Table 4 re-

ports numerical summaries of estimation errors evaluated at R “ 21 equally-spaced points

in r0, 1s and the corresponding CPU time on the processor Intel(R) Xeon(R) CPU E5-2690

v3 @ 2.60GHz. The results for the sample covariance function pΣS based on fully observed

X1p¨q, . . . ,Xnp¨q are also provided as the baseline for comparison. Note that, LLS is too

slow to implement for the case Li “ 101, so we do not report its result here.

A few trends are observable from Table 4. First, the binned implementations (BinLLS

and BinLLS-P) attain similar or even lower estimation errors compared with their direct

implementations (LLS and LLS-P) under all scenarios, while resulting in considerably faster

computational speeds especially under dense designs. For example, BinLLS runs over

400 times faster than LLS when Li “ 51. Second, all methods provide higher estimation

accuracies as Li increases, and enjoy similar performance when functions are very densely

observed, e.g., Li “ 51 and 101, compared with the fully observed functional case. However,

the performance of LLS-P and BinLLS-P deteriorates severely under sparse designs, e.g.,

Li “ 11 and 21, since limited information is available from a small number of observations

per subject. Among all competitors, we conclude that BinLLS is overall a unified approach
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Table 4: The average (standard error) functional matrix losses and average CPU time for p “ 6

over 100 simulation runs.

Li Method
Functional

Frobenius norm

Functional

matrix `1 norm

Elapsed time

(sec)
Method

Functional

Frobenius norm

Functional

matrix `1 norm

Elapsed time

(sec)

11
BinLLS 1.57(0.02) 1.72(0.03) 2.06 BinLLS-P 4.14(0.03) 4.36(0.04) 0.18

LLS 1.62(0.02) 1.76(0.03) 50.52 LLS-P 4.23(0.04) 4.47(0.05) 0.22

21
BinLLS 1.28(0.02) 1.42(0.03) 2.07 BinLLS-P 2.66(0.02) 2.80(0.02) 0.19

LLS 1.28(0.02) 1.42(0.03) 136.88 LLS-P 2.67(0.02) 2.82(0.03) 0.29

51
BinLLS 1.06(0.02) 1.20(0.03) 2.21 BinLLS-P 1.12(0.03) 1.26(0.03) 0.20

LLS 1.04(0.02) 1.18(0.03) 967.75 LLS-P 1.12(0.03) 1.26(0.03) 0.39

101
BinLLS 1.00(0.02) 1.14(0.03) 2.23 BinLLS-P 0.99(0.02) 1.13(0.03) 0.21

LLS - - - LLS-P 0.97(0.02) 1.11(0.03) 0.64

pΣS

Functional Frobenius norm Functional matrix `1 norm Elapsed time (sec)

1.04(0.03) 1.20(0.03) 0.11

that can handle both sparsely and densely sampled functional data well with increased

computational efficiency and guaranteed estimation accuracy.

We next examine the performance of BinLLS-based adaptive and universal functional

thresholding estimators in terms of estimation accuracy and support recovery consistency

using the same performance measures as in Tables 2–3. Tables 5–6 and Tables 11–14 of the

Supplementary Material report numerical results for settings of p “ 50 and 100 satisfying

Models 1 and 2 under different measurement schedules. We observe a few apparent pat-

terns from Tables 5–6 and 11–14. First, qΣA substantially outperforms qΣU with significantly

lower estimation errors in all settings. Second, qΣA works consistently well in recovering the

functional sparsity structures especially under the soft and SCAD functional thresholding

rules, while qΣU fails to identify such patterns. Third, the estimation and support recovery

consistencies of qΣA and qΣU are improved as Li increases. When curves are very densely

observed, e.g., Li “ 101, we observe that both estimators enjoy similar performance with

pΣA and pΣU in Tables 2–3 and Tables 9–10 of the Supplementary Material. Such obser-

vation provides empirical evidence to support our remark for Theorem 3 about the same

convergence rate between very densely observed and fully observed functional scenarios.
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Table 5: The average (standard error) functional matrix losses for partially observed functional

scenarios and p “ 50 over 100 simulation runs.

Li “ 11 Li “ 21 Li “ 51 Li “ 101

Model Method qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

2

Functional Frobenius norm

Hard 8.12(0.03) 10.41(0.02) 6.85(0.04) 9.89(0.01) 6.06(0.04) 9.60(0.02) 5.75(0.04) 9.51(0.02)

Soft 8.35(0.03) 10.37(0.01) 7.35(0.03) 9.60(0.03) 6.72(0.03) 8.86(0.04) 6.48(0.03) 8.56(0.04)

SCAD 8.32(0.03) 10.37(0.01) 7.23(0.04) 9.60(0.03) 6.50(0.04) 8.89(0.04) 6.23(0.04) 8.61(0.04)

Adap. lasso 7.83(0.03) 10.39(0.01) 6.69(0.04) 9.84(0.02) 5.97(0.04) 9.40(0.04) 5.71(0.04) 9.16(0.04)

Functional matrix `1 norm

Hard 3.82(0.04) 4.91(0.01) 3.36(0.04) 4.82(0.01) 3.00(0.05) 4.78(0.01) 2.85(0.05) 4.77(0.01)

Soft 3.96(0.02) 4.88(0.01) 3.71(0.03) 4.72(0.02) 3.50(0.03) 4.55(0.03) 3.44(0.03) 4.47(0.03)

SCAD 3.96(0.02) 4.88(0.01) 3.67(0.03) 4.72(0.02) 3.41(0.03) 4.55(0.02) 3.32(0.03) 4.48(0.02)

Adap. lasso 3.65(0.04) 4.90(0.01) 3.28(0.04) 4.80(0.01) 2.96(0.04) 4.73(0.01) 2.88(0.04) 4.69(0.02)

Table 6: The average TPRs/ FPRs for partially observed functional scenarios and p “ 50 over

100 simulation runs.

Li “ 11 Li “ 21 Li “ 51 Li “ 101

Model Method qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

2

Hard 0.58/0.00 0.00/0.00 0.69/0.00 0.00/0.00 0.75/0.00 0.01/0.00 0.79/0.00 0.01/0.00

Soft 0.95/0.04 0.03/0.01 0.97/0.05 0.22/0.03 0.99/0.06 0.48/0.06 0.99/0.06 0.58/0.07

SCAD 0.95/0.04 0.03/0.01 0.97/0.06 0.22/0.03 0.99/0.07 0.46/0.06 0.99/0.07 0.54/0.06

Adap. lasso 0.80/0.00 0.00/0.00 0.86/0.00 0.02/0.00 0.90/0.00 0.08/0.00 0.91/0.00 0.15/0.01
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6 Real Data

In this section, we aim to investigate the association between the brain functional connec-

tivity and fluid intelligence (gF ), the capacity to solve problems independently of acquired

knowledge (Cattell, 1987). The dataset contains subjects of resting-state fMRI scans and

the corresponding gF scores, measured by the 24-item Raven’s Progressive Matrices, from

the Human Connectome Project (HCP). We follow many recent proposals based on HCP

by modelling signals as multivariate random functions with each region of interest (ROI)

representing one random function (Zapata et al., 2022; Lee et al., 2021; Miao et al., 2022).

We focus our analysis on nlow “ 73 subjects with intelligence scores gF ď 8 and nhigh “ 85

subjects with gF ě 23, and consider p “ 83 ROIs of three generally acknowledged modules

in neuroscience study (Finn et al., 2015): the medial frontal (29 ROIs), frontoparietal (34

ROIs) and default mode modules (20 ROIs). For each subject, the BOLD signals at each

ROI are collected every 0.72 seconds for a total of L “ 1200 measurement locations (14.4

minutes). We first implement the ICA-FIX preprocessed pipeline (Glasser et al., 2013) and

a standard band-pass filter at r0.01, 0.08s Hz to exclude frequency bands not implicated

in resting state functional connectivity (Biswal et al., 1995). Figure 12 of the Supple-

mentary Material displays examplified trajectories of pre-smoothed data. The adaptive

functional thresholding method is then adopted to estimate the sparse covariance function

and therefore the brain networks.

The sparsity structures in Σ̂A for both groups are displayed in Figure 1. With pλ se-

lected by the cross-validation, the network associated with pΣA for subjects with gF ě 23 is

more densely connected than that with gF ď 8, as evident from Fig. 1(a)–(b). We further

set the sparsity level to 70% and 85%, and present the corresponding sparsity patterns

in Fig. 1(c)–(f). The results clearly indicate the existence of three diagonal blocks under

all sparsity levels, complying with the identification of the medial frontal, frontoparietal

and default mode modules in Finn et al. (2015). We also implement the universal func-

tional thresholding method. However, compared with pΣA, the results of pΣU suffer from
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(a) gF ď 8 : pΣA (80.42% zeros)

(b) gF ě 23: pΣA (72.93% zeros)

(c) gF ď 8: pΣA (70% zeros)

(d) gF ě 23: pΣA (70% zeros)

(e) gF ď 8: pΣA (85% zeros)

(f) gF ě 23: pΣA (85% zeros)

Figure 1: Estimated sparsity structures in pΣA using soft functional thresholding rule at fluid

intelligence gF ď 8 and gF ě 23: (a)–(b) with the corresponding λ̂ selected by fivefold cross-

validation; (c)–(f) with the estimated functional sparsity levels set at 70% and 85%.
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L R

L R

(a) gF ď 8: the medial frontal module in Fig. 1(e)

L R

L R

(b) gF ď 8: the frontoparietal module in Fig. 1(e)

L R

L R

(c) gF ď 8: the default mode module in Fig. 1(e)

L R

L R

(d) gF ě 23: the medial frontal module in Fig. 1(f)

L R

L R

(e) gF ě 23: the frontoparietal module in Fig. 1(f)

L R

L R

(f) gF ě 23: the default mode module in Fig. 1(f)

Figure 2: The connectivity strengths in Fig. 1(e)–(f) at fluid intelligence gF ď 8 and gF ě 23.

Salmon, orange and yellow nodes represent the ROIs in the medial frontal, frontoparietal and

default mode modules, respectively. The edge color from cyan to blue corresponds to the value

of }pΣA
jk}S{p}

pΣA
jj}S}

pΣA
kk}Sq

1{2 from small to large.
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the heteroscedasticity, as demonstrated in Section 5 and Section E.3 of the Supplementary

Material, and fail to detect any noticeable block structure, hence we choose not to report

them here. To explore the impact of gF on the functional connectivity, we compute the con-

nectivity strength using the standardized form }pΣA
jk}S{p}

pΣA
jj}S}

pΣA
kk}Sq

1{2 for j, k “ 1 . . . , p.

Interestingly, we observe from Figure 2 that subjects with gF ě 23 tend to have enhanced

brain connectivity in the medial frontal and frontoparietal modules, while the connectiv-

ity strength in the default mode module declines. This agrees with existing neuroscience

literature reporting a strong positive association between intelligence score and the medial

frontal/frontoparietal functional connectivity in the resting state (Van Den Heuvel et al.,

2009; Finn et al., 2015), and lends support to the conclusion that lower default mode mod-

ule activity is associated with better cognitive performance (Anticevic et al., 2012). See also

Section E.3 of the Supplementary Material, in which we illustrate our adaptive functional

thresholding estimation using another ADHD dataset.
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Supplementary material to “Adaptive functional thresholding for

sparse covariance function estimation in high dimensions”

Qin Fang, Shaojun Guo and Xinghao Qiao

This supplementary material contains the technical proofs for the fully observed func-

tional scenario in Section A, derivations of functional thresholding rules in Section B,

further discussion in Section C, additional methodological details and technical proofs for

the partially observed functional scenario in Section D and additional empirical results in

Section E.

A Technical proofs

Before stating the regularity conditions, we make some notation. For a function Z P S,

define }Z}8 “ supu,vPU |Zpu, vq|. For two sequences of real processes tanpuq, u P Uu and

tbnpuq, u P Uu, we write anpuq À bnpuq if there exists some constant c such that |anpuq| ď

c|bnpuq| holds for all n and u P U . Without loss of generality, in the following we assume

that EtXijpuqu ” 0 and both estimators pΣjkpu, vq and pΘjkpu, vq are defined as

pΣjkpu, vq “
1

n

n
ÿ

i“1

XijpuqXikpvq and pΘjkpu, vq “
1

n

n
ÿ

i“1

Xijpuq
2Xikpvq

2
´ pΣjkpu, vq

2,

respectively.

Lemma A1 Suppose that Conditions 1–4 hold. Then for any M ą 0, there exists some

constant ρ1 ą 0 such that

P

#

max
j,k

›

›

›

›

›

pΘjk ´Θjk

Θjk

›

›

›

›

›

8

ě ρ1
log2 p

n1{2

+

“ Opp´Mq.

Proof. Denote rΘjkpu, vq “ EtXijpuq
2Xikpvq

2u. We decompose pΘjkpu, vq ´Θjkpu, vq as

pΘjkpu, vq ´Θjkpu, vq

“ Σjkpu, vq
2
´ pΣjkpu, vq

2
`

1

n

n
ÿ

i“1

!

Xijpuq
2Xikpvq

2
´ rΘjkpu, vq

)

.

1



By Condition 3, Θjkpu, vq ě τσjpuqσkpvq for each j, k “ 1, . . . , p. Hence,

ˇ

ˇ

ˇ

ˇ

ˇ

pΘjkpu, vq ´Θjkpu, vq

Θjkpu, vq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

Σjkpu, vq
2 ´ pΣjkpu, vq

2

τσjpuqσkpvq

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Xijpuq
2Xikpvq

2 ´ rΘjkpu, vq

τσjpuqσkpvq

ˇ

ˇ

ˇ

ˇ

ˇ

“ H
p1q
jk pu, vq `H

p2q
jk pu, vq.

First, consider the concentration bound for }H
p1q
jk }8. Denote rYijkpu, vq “ YijpuqYikpvq´

Σjkpu, vq{tσjpuq
1{2σkpvq

1{2u and let djkppu, vq, pu
1, v1qq “ djpu, u

1q`dkpv, v
1q. Applying The-

orem 8.4 in Kosorok (2008) under Conditions 1 and 2, we obtain that, there exists some

constant C1 ą 0 such that
›

› supuPU |Y1jpuq|
›

›

ψ2
ď C1 for all j “ 1, . . . , p. By the property of

ψ1-norm, we have that

}YijpuqYikpvq ´ Yijpu
1
qYikpv

1
q}ψ1

ď }YijpuqtYikpvq ´ Yikpv
1
qu}ψ1

` }tYijpuq ´ Yijpu
1
quYikpv

1
q}ψ1

ď }Yijpuq}ψ2
}Yikpvq ´ Yikpv

1
q}ψ2

` }Yikpv
1
q}ψ2

}Yijpuq ´ Yijpu
1
q}ψ2

À tdjpu, u
1
q ` dkpv, v

1
qu “ djkppu, vq, pu

1, v1qq,

which implies that

›

›

›

rYijkpu, vq ´ rYijkpu
1, v1q

›

›

›

ψ1

À djkppu, vq, pu
1, v1qq. (S.1)

Note that

Z̄jkpu, vq “
pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2
“

1

n

n
ÿ

i“1

"

YijpuqYikpvq ´
Σjkpu, vq

σjpuq1{2σkpvq1{2

*

,

and for a random variable X and any integer m ě 1, E}X}m ď m!}X}mψ1
. By Bernstein’s

inequality and Lemma 8.3 of Kosorok (2008), we have that for u, v, u1, v1 P U ,

›

›

›
n1{2

!

Z̄jkpu, vq ´ Z̄jkpu
1, v1q

)
›

›

›

ψ1

À djkppu, vq, pu
1, v1qq.

For the semimetric djk, Dpε, djkq ď Dpε{2, djqDpε{2, dkq À ε´2r. Applying Theorem 8.4 in

Kosorok (2008) with Conditions 1 and 2 again, we obtain that, there exists some constant

2



C2 ą 0 such that

max
1ďj,kďp

›

›

›

›

sup
u,vPU

|n1{2Z̄jkpu, vq|

›

›

›

›

ψ1

ď C2.

This immediately implies that there exist some universal constant C3 ą 0 such that for

any x ą 0,

P

#

max
j,k

sup
u,vPU

ˇ

ˇ

ˇ

ˇ

ˇ

pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ą x

+

À p2 expt´C3n
1{2xu.

As a result, for any M ą 0, there exists some constant ρ̃1 ą 0 such that

P

#

max
j,k

sup
u,vPU

ˇ

ˇ

ˇ

ˇ

ˇ

pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ą ρ̃1
log p

n1{2

+

À p´M . (S.2)

Observe that

ˇ

ˇ

ˇ

ˇ

ˇ

pΣjkpu, vq
2 ´ Σjkpu, vq

2

σjpuqσkpvq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2

ˇ

ˇ

ˇ

ˇ

ˇ

2

` 2

ˇ

ˇ

ˇ

ˇ

ˇ

pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2

ˇ

ˇ

ˇ

ˇ

ˇ

,

since |Σjkpu, vq| ď σjpuq
1{2σkpvq

1{2. By the inequality (S.2), we have that

P

"

max
j,k
}H

p1q
jk }8 ą 2ρ̃1

log p

n1{2
` ρ̃2

1

log2 p

n

*

À p´M . (S.3)

We next control the bound for }H
p2q
jk }8 through the truncation technique. Note that

Xijpuq
2Xikpvq

2 ´ rΘjkpu, vq

σjpuqσkpvq
“ Yijpuq

2Yikpvq
2
´

rΘjkpu, vq

σjpuqσkpvq
.

Define that Y ˚ij puq “ YijpuqI
!

}Yij}8 ď C4 log1{2
pp_ nq

)

and

Z˚ijkpu, vq “ Y ˚ij puq
2Y ˚ikpvq

2
´ EtY ˚ij puq2Y ˚ikpvq2u.

By the property of ψ1-norm and |Y ˚ij puq
2 ´ Y ˚ij pu

1q2| ď 2C4 log1{2
pp _ nq|Y ˚ij puq ´ Y ˚ij pu

1q|,

we have that

›

›Y ˚ij puq
2Y ˚ikpvq

2
´ Y ˚ij pu

1
q
2Y ˚ikpv

1
q
2
›

›

ψ1

ď
›

›Y ˚ij puq
2
tY ˚ikpvq

2
´ Y ˚ikpv

1
q
2
u
›

›

ψ1
`
›

›tY ˚ij puq
2
´ Y ˚ij pu

1
q
2
uY ˚ikpv

1
q
2
›

›

ψ1

À logpp_ nq
!

}Y ˚ij puq}ψ2 }Y
˚
ikpvq ´ Y

˚
ikpv

1
q}ψ2

` }Y ˚ikpv
1
q}ψ2

›

›Y ˚ij puq ´ Y
˚
ij pu

1
q
›

›

ψ2

)

À logpp_ nqtdjpu, u
1
q ` dkpv, v

1
qu À logpp_ nqdjkppu, vq, pu

1, v1qq,

3



which implies that, similar to (S.1),

›

›Z˚ijkpu, vq ´ Z
˚
ijkpu

1, v1q
›

›

ψ1
À logpp_ nqdjkppu, vq, pu

1, v1qq.

Let Z̄˚jkpu, vq “ n´1
řn
i“1 Z

˚
ijkpu, vq. We apply the similar technique of Z̄jk above to the

term Z̄˚jk and obtain that there exists some universal constant C5 ą 0 such that for any

x ą 0,

P

#

max
j,k

sup
u,vPU

ˇ

ˇ

ˇ

ˇ

ˇ

Z̄˚jkpu, vq

logpp_ nq

ˇ

ˇ

ˇ

ˇ

ˇ

ą x

+

À p2 expp´C5n
1{2xq.

As a result, for any M ą 0, there exists some constant ρ̃2 ą 0 such that

P

"

max
j,k

sup
u,vPU

ˇ

ˇZ̄˚jkpu, vq
ˇ

ˇ ą ρ̃2
log2

pp_ nq

n1{2

*

À p´M .

Now we consider the bound of the term }Yij}8. By Conditions 1-2 and Theorem 8.4 of

Kosorok (2008), we immediately have that there exists some constant C6 ą 0

max
1ďiďn,1ďjďp

›

›

›
sup
uPU

|Yijpuq|
›

›

›

ψ2

ď C6,

which also implies that there exists some constant C7 ą 0 such that for any x ą 0,

P

"

max
1ďiďn,1ďjďp

}Yijpuq}8 ą x

*

À np expp´C7x
2
q.

Hence we obtain that for any M ą 0, there exists some constant C4 ą 0 such that

P

"

max
1ďiďn,1ďjďp

}Yij}8 ą C4 log1{2
pp_ nq

*

À pp_ nq´M . (S.4)

On the event

Ωn0 “

!

max
1ďiďn,1ďjďp

}Yij}8 ď C4 log1{2
pp_ nq

)

,

we find that

Yijpuq
2Yikpvq

2
´

rΘjkpu, vq

σjpuqσkpvq
“ Y ˚ij puq

2Y ˚ikpvq
2
´ E

!

Y ˚ij puq
2Y ˚ikpvq

2
)

` E
!

Y ˚ij puq
2Y ˚ikpvq

2
´ Yijpuq

2Yikpvq
2
)

.

Note that Y ˚ij puq
2 ´ Yijpuq

2 “ Yijpuq
2It}Yij}8 ą C4 log1{2

pp_ nqu. By the inequality (S.4),

we can obtain that

ˇ

ˇ

ˇ
E
!

Y ˚ij puq
2Y ˚ikpvq

2
´ Yijpuq

2Yikpvq
2
)ˇ

ˇ

ˇ
À pp_ nq´M .

4



Therefore, for any M ą 0, there exist some constant ρ̃3 ą 0 such that

P

"

max
1ďjďp

}H
p2q
jk }8 ą ρ̃3

log2
pp_ nq

n1{2

*

À p´M . (S.5)

Combining (S.3) and (S.5), we obtain that for any M ą 0, there exists some constant

ρ1 ą 0 such that

P

#

max
j,k

›

›

›

›

›

pΘjk ´Θjk

Θjk

›

›

›

›

›

8

ě ρ1
log2

pp_ nq

n1{2

+

À p´M .

The proof is complete. ˝

Lemma A2 Suppose that Conditions 1–4 hold. Then for any M ą 0, there exist some

constant ρ2 ą 0 such that

max
j,k

›

›

›

›

›

Θ
1{2
jk ´

pΘ
1{2
jk

pΘ
1{2
jk

›

›

›

›

›

8

ď ρ2
log2 p

n1{2
(S.6)

with probability greater than 1´Opp´Mq.

Proof. Let the event Ωnpsq “ t}ppΘjk ´ Θjkq{Θjk}8 ď slog2 p{n1{2 ď 1{2u. For any

M ą 0, it follows from Lemma A1 that there exists some constant ρ1 ą 0 such that

P tΩnpρ1qu ě 1´Opp´Mq. Since
›

›

›

›

›

Θjk

pΘjk

›

›

›

›

›

8

“

›

›

›

›

›

Θjk ´ pΘjk

pΘjk

` 1

›

›

›

›

›

8

ď

›

›

›

›

›

Θjk ´ pΘjk

Θjk

›

›

›

›

›

8

›

›

›

›

›

Θjk

pΘjk

›

›

›

›

›

8

` 1,

hence, on the event Ωnpρ1q, we have that }Θjk{pΘjk}8 ď 2. As a result, on the event Ωnpρ1q,

it follows that
›

›

›

›

›

Θ
1{2
jk ´

pΘ
1{2
jk

pΘ
1{2
jk

›

›

›

›

›

8

“

›

›

›

›

›

Θjk ´ pΘjk

pΘjk ` pΘ
1{2
jk Θ

1{2
jk

›

›

›

›

›

8

ď

›

›

›

›

›

Θjk ´ pΘjk

Θjk

›

›

›

›

›

8

›

›

›

›

›

Θjk

pΘjk

›

›

›

›

›

8

ď 2ρ1
log2 p

n1{2
.

Take ρ2 “ 2ρ1 and the proof is complete. ˝

Lemma A3 Suppose that Conditions 1–4 holds. Then for any M ą 0, there exist some

positive constant ρ3 ą 0 such that

max
j,k

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ď ρ3

ˆ

log p

n

˙1{2

with probability greater than 1´Opp´Mq.
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Proof. Let rYijkpu, vq “ YijpuqYikpvq ´ Σjkpu, vq{tσjpuq
1{2σkpvq

1{2u and

Z̄jkpu, vq “
pΣjkpu, vq ´ Σjkpu, vq

σjpuq1{2σkpvq1{2
“

1

n

n
ÿ

i“1

rYijkpu, vq.

We first derive the concentration bound of }Z̄jk}S . It follows from the proof of Lemma A1

that there exists some constant C8 ą 0 such that

max
j,k

›

›

›

›

sup
u,vPU

ˇ

ˇ

ˇ

rY1jkpu, vq
ˇ

ˇ

ˇ

›

›

›

›

ψ1

ď C8.

which further implies that maxj,k

›

›

›

›

›rY1jk

›

›

S

›

›

›

ψ1

ď C8. As a result, it follows from Theorem 2.5

of Bosq (2000) that there exists some universal constant C9 ą 0 such that for any x ą 0

P
`›

›Z̄jk
›

›

S ě x
˘

ď 2 expt´C9nminpx2, xqu.

For any M ą 0, there exists some constant ρ̃ ą 0 that

›

›Z̄jk
›

›

S ď ρ̃

ˆ

log p

n

˙1{2

(S.7)

with probability greater than 1´Opp´Mq.

Now we derive the bound of
›

›

›

`

pΣjk ´ Σjk

˘

{pΘ
1{2
jk

›

›

›

S
. Note that Condition 3 implies that

Θjkpu, vq ě τσjpuqσkpvq. We obtain that

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ď

›

›

›

›

›

pΣjk ´ Σjk

Θ
1{2
jk

›

›

›

›

›

S

›

›

›

›

›

Θ
1{2
jk

pΘ
1{2
jk

›

›

›

›

›

8

ď
›

›τ´1{2Z̄jk
›

›

S

˜
›

›

›

›

›

Θ
1{2
jk ´

pΘ
1{2
jk

pΘ
1{2
jk

›

›

›

›

›

8

` 1

¸

.

Hence, together with (S.7) and Lemma A2, the lemma follows. The proof is complete. ˝

Proof of Theorem 1. For easy representation, define

pΦjkpu, vq “
pΣjkpu, vq

pΘjkpu, vq1{2
, rΦjkpu, vq “

Σjkpu, vq

pΘjkpu, vq1{2
and Φjkpu, vq “

Σjkpu, vq

Θjkpu, vq1{2
.

Let

Ωn1 “

!

max
j,k
}pΦjk ´ rΦjk}S ď λ

)

,Ωn2 “

#

max
j,k

›

›

›

›

›

pΘjk ´Θjk

Θjk

›

›

›

›

›

8

ď
1

2

+

.

It is immediate to see that under the event Ωn2, 2´1}Θjk}8 ď }pΘjk}8 ď 2}Θjk}8 for all j

and k. By Conditions 1–3, we have Θjkpu, vq ď C 1σjpuqσkpvq and Θjkpu, vq ě τσjpuqσkpvq

6



Then under the event Ωn1 X Ωn2 and Conditions (i)-(iii) on SλpZq, we obtain that

p
ÿ

k“1

}pΣA

jk ´ Σjk}S

“

p
ÿ

k“1

}pΣA

jk ´ Σjk}SIt}pΦjk}S ě λu `
p
ÿ

k“1

}Σjk}SIt}pΦjk}S ă λu

ď

p
ÿ

k“1

!

}sλppΦjkq ´ pΦjk}S ` }pΦjk ´ rΦjk}S

)

›

›pΘ
1{2
jk

›

›

8
It}pΦjk}S ě λ, }rΦjk}S ě λu

`

p
ÿ

k“1

›

›

›

“

sλppΦjkq ´ rΦjk

‰

pΘ
1{2
jk

›

›

›

S
It}pΦjk}S ě λ, }rΦjk}S ă λu `

p
ÿ

k“1

}Σjk}SIt}rΦjk}S ă 2λu

ď

p
ÿ

k“1

2λ
›

›pΘ
1{2
jk

›

›

8
It}rΦjk}S ě λu `

p
ÿ

k“1

p1` cq}rΦjk}S}pΘ
1{2
jk }8It}

rΦjk}S ă λu

`

p
ÿ

k“1

}rΦjk}S
›

›pΘ
1{2
jk

›

›

8
It}rΦjk}S ă 2λu

À λ1´q
p
ÿ

k“1

›

›pΘjk

›

›

1{2

8
}rΦjk}

q
S À λ1´q

p
ÿ

k“1

›

›σj
›

›

p1´qq{2

8

›

›σk
›

›

p1´qq{2

8
}Σjk}

q
S À s0ppq

ˆ

log p

n

˙

1´q
2

.

Since there exists some constant δ ą 0 such that P tΩC
n1u ` P tΩC

n2u À p´M , the theorem

follows. ˝

Proof of Theorem 2. We consider two sets: Sn1 “ tpj, kq : }pΣA
jk}S ‰ 0 and }Σjk}S “

0u and Sn2 “ tpj, kq : }pΣA
jk}S “ 0 and }Σjk}S ‰ 0u. It suffices to prove that

P
`

|Sn1| ą 0
˘

` P
`

|Sn2| ą 0
˘

Ñ 0,

as n, pÑ 8. By Conditions (i)-(iii) on SλpZq,

Sn1 “

#

pj, kq :

›

›

›

›

›

pΣjk

pΘ
1{2
jk

›

›

›

›

›

S

ą λ and }Σjk}S “ 0

+

Ă

#

pj, kq :

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ą λ

+

Therefore, with the choice λ “ δplog p{nq1{2, we obtain

P p|Sn1| ą 0q ď P

#

max
j,k

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ą λ

+

À p´M . (S.8)

for some prespecified M ą 0. Similarly, we have

Sn2 “

#

pj, kq :

›

›

›

›

›

pΣjk

pΘ
1{2
jk

›

›

›

›

›

S

ď λ and }Σjk}S ‰ 0

+

.

7



Note that }Σjk}S ‰ 0 implies that

p2δ ` γq

ˆ

log p

n

˙1{2

ă

›

›

›

›

›

Σjk

Θ
1{2
jk

›

›

›

›

›

S

ď

«›

›

›

›

›

Σjk ´ pΣjk

pΘ
1{2
jk

›

›

›

›

›

S

`

›

›

›

›

›

pΣjk

pΘ
1{2
jk

›

›

›

›

›

S

ff ›

›

›

›

›

pΘ
1{2
jk

Θ
1{2
jk

›

›

›

›

›

8

. (S.9)

Let Ωn3 “

!

}ppΘ
1{2
jk ´ Θ

1{2
jk q{

pΘ
1{2
jk }8 ď ε

)

for some small constant 0 ă ε ă γ{p4δ ` 2γq.

Conditioned on the event of Ωn3, the inequality
›

›

›

›

›

pΘ
1{2
jk

Θ
1{2
jk

›

›

›

›

›

8

ď

›

›

›

›

›

pΘ
1{2
jk ´Θ

1{2
jk

pΘ
1{2
jk

›

›

›

›

›

8

›

›

›

›

›

pΘ
1{2
jk

Θ
1{2
jk

›

›

›

›

›

8

` 1

implies that }pΘ
1{2
jk {Θ

1{2
jk }8 ď 1{p1´ εq. This together with (S.9) shows that

Sn2 X Ωn3 Ă

#

pj, kq :

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ą δ

ˆ

log p

n

˙1{2
+

.

As a result,

P p|Sn2| ą 0q ď P pΩC
n3q ` P

#

max
j,k

›

›

›

›

›

pΣjk ´ Σjk

pΘ
1{2
jk

›

›

›

›

›

S

ą δ

ˆ

log p

n

˙1{2
+

À p´M . (S.10)

Combining (S.8) and (S.10), we complete our proof. ˝

B Examples of functional thresholding operators

In Section B.1, we verify that our proposed soft, SCAD and adaptive lasso functional

thresholding rules satisfy conditions (i)–(iii) in Section 2. We then present the derivations

of these three functional thresholding rules in Section B.2.

B.1 Verification of conditions (i)–(iii)

It is directly implied from the thresholding rules that the soft, SCAD and adaptive lasso

functional methods satisfy condition (ii). Since the soft functional thresholding has the

largest amount of functional shrinkage in the Hilbert–Schmidt norm compared with SCAD

and adaptive lasso methods, it suffices to show that the soft functional thresholding satisfies

condition (iii). For }Z}S ď λ, the thresholding effect leads to }0´Z}S ď λ. When }Z}S ą λ,

we obtain that }Zλ{}Z}S}S “ λ.

8



We next show that the above three thresholding methods satisfy condition (i). By the

triangle inequality, }Z ´ Y }S ď λ in condition (i) implies that
ˇ

ˇ}Z}S ´ λ
ˇ

ˇ ď }Y }S .

• Soft functional thresholding: If }Z}S ď λ, 0 ď c}Y }S directly holds for all Y P S and

c ą 0. When }Z}S ą λ, we have }sSλpZq}S “ }Z}S ´ λ ď }Y }S with the choice of

c “ 1.

• SCAD functional thresholding: When }Z}S ď 2λ, sSCλ pZq is the same as the soft

functional thresholding rule. For }Z}S ą 2λ, we have }sSCλ pZq}S ď }Z}S ď }Y }S`λ ď

}Y }S ` }Z}S{2 and hence }sSCλ pZq}S ď }Z}S ď 2}Y }S . Combining the above results,

we take c “ 2.

• Adaptive lasso functional thresholding: Let rηs denote the smallest integer greater

than or equal to η. For }Z}S ď λ, this condition holds for all Y P S and c ą 0. For

}Z}S ą λ, we have that }sAL
λ pZq}S “ }Zp1´λ

η`1{}Z}η`1
S q}S “ p}Z}

η`1
S ´λη`1q{}Z}ηS ď

p}Z}
rηs`1
S ´λrηs`1q{}Z}

rηs

S “ p}Z}S ´λqp}Z}
rηs

S `}Z}
rηs´1
S λ` ¨ ¨ ¨`λrηsq{}Z}

rηs

S ď prηs`

1q}Y }S . Hence, for any η ě 0, we can find c “ rηs ` 1. In the special case of η “ 0,

sAL
λ pZq degenerates to the soft functional thresholding rule with c “ 1, which is

consistent with our finding for the soft functional thresholding.

B.2 Derivations of the functional thresholding rules from various

penalty functions

Soft functional thresholding can be obtained via

sSλpZq “ arg min
θPS

"

1

2
}θ ´ Z}2S ` λ}θ}S

*

. (S.11)

First, we show that if }Z}S ď λ, then }sSλpZq}S “ 0 and hence sSλpZq “ 0. This results from

the fact that, for any θ,

1

2
}θ ´ Z}2S ` λ}θ}S ě

1

2

`

}θ}S ´ }Z}S
˘2
` λ}θ}S

“
1

2
}θ}2S ` pλ´ }Z}Sq}θ}S `

1

2
}Z}2S ě

1

2
}Z}2S .

9



Second, we show that if }Z}S ą λ, then }sSλpZq}S ‰ 0. In fact, we can find θc “ cZ with

c “ 1´ λ{}Z}S ą 0 such that

1

2
}θc ´ Z}

2
S ` λ}θc}S “

1

2
p1´ cq2}Z}2S ` λc}Z}S ă

1

2
}Z}2S .

As a result, we are able to take the first derivative of (S.11) with respect to θ and set

p1λpθq “ θ ´ Z ` λθ{}θ}S “ 0. Thus, pθ “ Z}pθ}S{
`

}pθ}S ` λ
˘

, which implies that }pθ}S “

}Z}S ´ λ. Combining the above results, we have that pθ “ Zp1´ λ{}Z}Sq`.

The SCAD and adaptive lasso functional thresholding rules can be derived in a similar

fashion. Hence, we only present their penalty functions here. The functional version of

SCAD penalty takes the form of

pλpθq “ λ}θ}SIp}θ}S ď λq`
2aλ}θ}S ´ }θ}

2
S ´ λ

2

2pa´ 1q
Ipλ ă }θ}S ď aλq`

λ2pa` 1q

2
Ip}θ}S ą aλq,

for a ą 2. For the functional version of adaptive lasso penalty, we use pλpθq “ λη`1}Z}´ηS }θ}S ,

for η ě 0. A similar adaptive lasso penalty function operating on | ¨ | for the univariate

scalar case can be found in Rothman et al. (2009).

C Further discussion

C.1 Supremum-norm-based class of functional thresholding op-

erators

In general, conditions (i)–(iii) are satisfied by a number of solutions to (1), where the

presence of } ¨ }S in both the loss and various penalty functions leads to the solutions

as functions of }Z}S . Such connection demonstrates the rationale of imposing Hilbert–

Schmidt-norm based conditions (i)–(iii). For examples of functional data with some local

spikes, one may suggest another class of functional thresholding operators s̃λpZq satisfying

three supremum-norm based conditions analogous to conditions (i)–(iii), where, for any

Q P S, we denote its supremum norm by }Q}8 “ supu,vPU |Qpu, vq|. In this case, s̃λpZq

10



can not be directly derived as the solution to (1) with pλpθq “ p̃λp}θ}8q. However, by

substituting } ¨ }S in sSλpZq, s
SC
λ pZq and sAL

λ pZq with } ¨ }8, the corresponding supremum-

norm based functional thresholding rules can be presented and checked to satisfy three

conditions for s̃λpZq in a similar fashion. To study theoretical properties analogous to

Theorems 1 and 2 in Section 3, the main challenge is to establish concentration bounds

on some standardized processes in the supremum norm, where our tools and results in

Section A of the Supplementary Material can be applied accordingly. In this regard, the

} ¨ }S that we adopt in sλpZq is not necessarily the unique choice, but serves as the building

block for the sparse covariance function estimation problem.

C.2 Additional applications

The fourth interesting application considers estimating functional graphical models tar-

geting at identifying the conditional dependence structure among components in Xip¨q.

Qiao et al. (2019) proposed to estimate a block sparse inverse covariance matrix by treat-

ing dimensions of Xijp¨q’s as approaching infinity. However, to deal with truly infinite-

dimensional objects, it is desirable to avoid the estimation of the unbounded inverse of Σ.

For Gaussian graphical models, an innovative transformation (Fan and Lv, 2016) converts

the problem of estimating sparse inverse covariance matrix to that of sparse covariance ma-

trix estimation. It is interesting to generalize this transformation strategy to the functional

domain and hence our sparse covariance function estimation approach can be applied.

The fifth potential application considers the functional classification problem when esti-

mating the covariance function plays a key role, e.g., functional linear discriminant analysis

to classify univariate functional data (Park et al., 2021). One natural way to deal with clas-

sification for multivariate functional data tXip¨qu
n
i“1 is to concatenate multiple functions

directly and then generalize the univariate functional classification methods to the mul-

tivariate setting by making use of the estimation of Σ. When p is large, it is thus of

interest to incorporate the proposed sparse covariance function estimation framework into

11



the development of the classification approach for a large bundle of curves.

D Partially observed functional data

Section D.1 gives the expression of the local linear surface smoother for the cross-covariance

estimation. Section D.2 presents the details of pre-smoothing for densely sampled functional

data. Section D.3 provides all technical proofs for the partially observed functional scenario.

Section D.4 presents the heuristic verification of Ijk in (12) and Condition 8.

D.1 Local linear surface smoother

We use (7) to derive the expression of its minimizer. Recall Tab,ijk and Sab,jk in (8) and (10),

respectively, for a, b “ 0, 1, 2, i “ 1, . . . , n and j, k “ 1, . . . , p. To minimize the objective in

(7), some calculations lead to the resulting estimator

pΣjk “

n
ÿ

i“1

pS20S02 ´ S
2
11qT00,ijk ´ pS10S02 ´ S01S11qT10,ijk ` pS10S11 ´ S01S20qT01,ijk

pS20S02 ´ S2
11qS00 ´ pS10S02 ´ S01S11qS10 ` pS10S11 ´ S01S20qS01

:“
n
ÿ

i“1

pW1,jkT00,ijk `W2,jkT10,ijk `W3,jkT01,ijkq ,

(S.12)

where we drop subscripts j, k in Sab,jk’s to simplify the notation. Note that, under Model (19),

Sab,jk’s no longer depend on j, k, and hence subscripts j, k in Sab,jk’s can be dropped.

D.2 Pre-smoothing

When each random function Xijp¨q is densely observed with errors satisfying Model (6),

the commonly adopted pre-smoothing approach applies local linear smoother to estimate

each Xijp¨q before subsequent analysis. The reconstructed individual function is obtained

by pXijpuq “ â0, where

pâ0, â1q “ argmin
a0,a1

Lij
ÿ

l“1

 

Zijl ´ a0 ´ a1pUijl ´ uq
(2
KhX pUil ´ uq.

12



Let Ta,ijpuq “
řLij

l“1KhX pUijl ´ uqpUijl´uq
aZijl and Sa,ijpuq “

řLij

l“1KhX pUijl ´ uqpUijl´uq
b

for a “ 0, 1, 2. Solving the minimization problem above yields that

pXijpuq “
S2,ijpuqT0,ijpuq ´ S1,ijpuqT1,ijpuq

S2,ijpuqS0,ijpuq ´ tS1,ijpuqu2
.

Under the simplified model in (19), we drop the subscript j in Lij and Sa,ij in the expression

of pXijpuq above. For an equally-spaced grid of R points u1 ă ¨ ¨ ¨ ă uR P U , the binned

approximation of pXijpuq is

qXijpuq “
qS2,ipuqqT0,ijpuq ´ qS1,ipuqqT1,ijpuq

qS2,ipuqqS0,ipuq ´ tqS1,ipuqu2
,

where qTa,ijpuq “
řR
r“1KhX pur ´ uqpur ´ uqaDr,ij and qSa,ipuq “

řR
r“1KhX pur ´ uqpur ´

uqa$r,i. See also Table 7 for the computational complexity analysis of the pre-smoothing

based on local linear smoother and its binned implementation, denoted as LLS-P and

BinLLS-P respectively, under Models (6) and (19).

Table 7: The computational complexity analysis of LLS- and BinLLS-based pre-smoothings

under Models (6) and (19) when evaluating the reconstructed functions at a grid of R points.

Method Model
Number of

kernel evaluations

Number of operations

(additions and multiplications)

LLS-P (6) OpR
řn
i“1

řp
j“1 Lijq OpR

řn
i“1

řp
j“1 Lijq

LLS-P (19) OpR
řn
i“1 Liq OppR

řn
i“1 Liq

BinLLS-P (19) OpRq OpnpR2 ` p
řn
i“1 Liq

D.3 Technical proofs

Proof of Theorem 3. Define

rΛjkpu, vq “
rΣjkpu, vq

rΨjkpu, vq1{2
, qΛjkpu, vq “

Σjkpu, vq

rΨjkpu, vq1{2
and Λjkpu, vq “

Σjkpu, vq

Ψjkpu, vq1{2
.

Let

rΩn1 “

!

max
j,k
}rΛjk ´ qΛjk}S ď λ

)

, rΩn2 “

#

max
j,k

›

›

›

›

›

rΨjk ´Ψjk

Ψjk

›

›

›

›

›

8

ď
1

2

+

.
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First, we can obtain from Condition 8 that P prΩC
n2q “ op1q. Note that

›

›

›

›

›

rΣjk ´ Σjk

rΨ
1{2
jk

›

›

›

›

›

S

ď

›

›

›

›

›

rΣjk ´ Σjk

Ψ
1{2
jk

›

›

›

›

›

S

›

›

›

›

›

Ψ
1{2
jk

rΨ
1{2
jk

›

›

›

›

›

8

À

›

›

›

rΣjk ´ Σjk

›

›

›

S

˜
›

›

›

›

›

Ψ
1{2
jk ´

rΨ
1{2
jk

rΨ
1{2
jk

›

›

›

›

›

8

` 1

¸

.

It follows from Condition 7 that there exists some constant δ̃ ą 0 such that P tprΩn1q
Cu “

op1q. We also can see that under the event rΩn2, 2´1}Ψjk}8 ď }rΨjk}8 ď 2}Ψjk}8 for all j

and k. Then on the event rΩn1 X rΩn2 and Conditions (i)-(iii) on SλpZq, we obtain that

p
ÿ

k“1

}rΣA

jk ´ Σjk}S

“

p
ÿ

k“1

}rΣA

jk ´ Σjk}SIt}rΛjk}S ě λu `
p
ÿ

k“1

}Σjk}SIt}rΛjk}S ă λu

ď

p
ÿ

k“1

!

}sλprΛjkq ´ rΛjk}S ` }rΛjk ´ qΛjk}S

)

›

›rΨ
1{2
jk

›

›

8
It}rΛjk}S ě λ, }qΛjk}S ě λu

`

p
ÿ

k“1

›

›

›

“

sλprΛjkq ´ qΛjk

‰

rΨ
1{2
jk

›

›

›

S
It}rΛjk}S ě λ, }qΛjk}S ă λu `

p
ÿ

k“1

}Σjk}SIt}qΛjk}S ă 2λu

ď

p
ÿ

k“1

2λ
›

›rΨ
1{2
jk

›

›

8
It}qΛjk}S ě λu `

p
ÿ

k“1

p1` cq}qΛjk}S}rΨ
1{2
jk }8It}

qΛjk}S ă λu

`

p
ÿ

k“1

}qΛjk}S
›

›rΨ
1{2
jk

›

›

8
It}qΛjk}S ă 2λu

À λ1´q
p
ÿ

k“1

›

›rΨjk

›

›

1{2

8
}qΛjk}

q
S À λ1´q

p
ÿ

k“1

›

›Ψjk

›

›

p1´qq{2

8
}Σjk}

q
S À s̃0ppq

ˆ

log p

n2γ1

˙

1´q
2

.

Theorem 3 follows. ˝

Proof of Theorem 4. Consider two sets: rSn1 “ tpj, kq : }rΣA
jk}S ‰ 0 and }Σjk}S “ 0u

and rSn2 “ tpj, kq : }rΣA
jk}S “ 0 and }Σjk}S ‰ 0u. It suffices to prove that

P
`

|rSn1| ą 0
˘

` P
`

|rSn2| ą 0
˘

Ñ 0,

as n, pÑ 8. By Conditions (i)-(iii) on SλpZq,

rSn1 “

#

pj, kq :

›

›

›

›

›

rΣjk

rΨ
1{2
jk

›

›

›

›

›

S

ą λ and }Σjk}S “ 0

+

Ă

#

pj, kq :

›

›

›

›

›

rΣjk ´ Σjk

rΨ
1{2
jk

›

›

›

›

›

S

ą λ

+

Therefore, with the choice λ “ δ̃plog p{n2γ1q1{2, we obtain

P p|rSn1| ą 0q ď P

#

max
j,k

›

›

›

›

›

rΣjk ´ Σjk

rΨ
1{2
jk

›

›

›

›

›

S

ą λ

+

“ op1q, (S.13)
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as stated in the proof of Theorem 3. Similarly, we have

rSn2 “

#

pj, kq :

›

›

›

›

›

rΣjk

rΨ
1{2
jk

›

›

›

›

›

S

ď λ and }Σjk}S ‰ 0

+

.

Note that }Σjk}S ‰ 0 implies that

p2δ̃ ` γ̃q

ˆ

log p

n2γ1

˙1{2

ă

›

›

›

›

›

Σjk

Ψ
1{2
jk

›

›

›

›

›

S

ď

«
›

›

›

›

›

Σjk ´ rΣjk

rΨ
1{2
jk

›

›

›

›

›

S

`

›

›

›

›

›

rΣjk

rΨ
1{2
jk

›

›

›

›

›

S

ff
›

›

›

›

›

rΨ
1{2
jk

Ψ
1{2
jk

›

›

›

›

›

8

. (S.14)

Let rΩn3 “

!

}prΨ
1{2
jk ´ Ψ

1{2
jk q{

rΨ
1{2
jk }8 ď ε̃

)

for some small constant 0 ă ε̃ ă γ̃{p4δ̃ ` 2γ̃q.

By Condition 8, P tprΩn3q
Cu “ op1q. Conditioning on the event of rΩn3, we can see that

}rΨ
1{2
jk {Ψ

1{2
jk }8 ď 1{p1´ ε̃q. This together with (S.14) shows that

rSn2 X rΩn3 Ă

#

pj, kq :

›

›

›

›

›

rΣjk ´ Σjk

rΨ
1{2
jk

›

›

›

›

›

S

ą δ̃

ˆ

log p

n2γ1

˙1{2
+

.

As a result,

P p|rSn2| ą 0q ď P tprΩn3q
C
u ` P

#

max
j,k

›

›

›

›

›

rΣjk ´ Σjk

rΨ
1{2
jk

›

›

›

›

›

S

ą δ̃

ˆ

log p

n2γ1

˙1{2
+

“ op1q. (S.15)

Combining (S.13) and (S.15), we complete our proof. ˝

D.4 Heuristic verification of Ijk in (12) and Condition 8

In this section we provide the heuristic verification of Ijk in (12) and Condition 8 as their

detailed proofs are not only long and challenging but also largely deviate from the current

focus of the paper.

Recall that

rΨjk “ Ijk

n
ÿ

i“1

`

W1,jkV00,ijk `W2,jkV10,ijk `W3,jkV01,ijk

˘2
,

where, for a, b “ 0, 1, 2,

Vab,ijkpu, vq “

Lij
ÿ

i“1

Lik
ÿ

m“1

gab
`

hC , pu, vq, pUijl, Uikmq
˘ 

ZijlZikm ´ rΣjkpu, vq
(

,

gab
 

h, pu, vq, pUijl, Uikmq
(

“ KhpUijl ´ uqKhpUikm ´ vqpUijl ´ uq
a
pUikm ´ vq

b.
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The expression of rΨjk in (11) can be decomposed as

rΨjk “ IjkW
2
1,jk

n
ÿ

i“1

V 2
00,ijk ` IjkW

2
2,jk

n
ÿ

i“1

V 2
10,ijk ` IjkW

2
3,jk

n
ÿ

i“1

V 2
01,ijk

`2IjkW1,jkW2,jk

n
ÿ

i“1

V00,ijkV10,ijk ` 2IjkW1,jkW3,jk

n
ÿ

i“1

V00,ijkV01,ijk

`2IjkW2,jkW3,jk

n
ÿ

i“1

V10,ijkV01,ijk

“ rΨ
p1q
jk `

rΨ
p2q
jk ` ¨ ¨ ¨ `

rΨ
p5q
jk `

rΨ
p6q
jk . (S.16)

We first focus on the term rΨ
p1q
jk . For a, b “ 0, 1, 2, define

V
p1q
ab,ijkpu, vq “

Lij
ÿ

l“1

Lik
ÿ

m“1

gab
`

hC , pu, vq, pUijl, Uikmq
˘ 

ZijlZikm ´ Σjkpu, vq
(

,

V
p2q
ab,ijkpu, vq “

Lij
ÿ

l“1

Lik
ÿ

m“1

gab
`

hC , pu, vq, pUijl, Uikmq
˘ 

Σjkpu, vq ´ rΣjkpu, vq
(

.

The term rΨ
p1q
jk can be re-expressed as

rΨ
p1q
jk “ IjkW

2
1,jk

n
ÿ

i“1

 

V
p1q

00,ijk

(2
` IjkW

2
1,jk

n
ÿ

i“1

 

V
p2q

00,ijk

(2
` 2IjkW

2
1,jk

n
ÿ

i“1

V
p1q

00,ijkV
p2q

00,ijk

“ Djk,1 `Djk,2 `Djk,3. (S.17)

(a) Verification of Ijk. To show the rationale of imposing the rate Ijk in (12), we need

to verify that

Ijk

n
ÿ

i“1

`

W1,jkV00,ijk `W2,jkV10,ijk `W3,jkV01,ijk

˘2
— 1` oP p1q. (S.18)

for each u, v P U . Denote by ñjk “
řn
i“1 LijLik. Recall that

Sab,jkpu, vq “
n
ÿ

i“1

Lij
ÿ

l“1

Lik
ÿ

m“1

gab
 

hC , pu, vq, pUijl, Uikmq
(

.

It can be shown that Sab,jkpu, vq — ñjkh
a`b
C t1`oP p1qu for a, b “ 0, 1, 2, which together with

(S.12) implies that

W1,jkpu, vq — ñ´1
jk

 

1` oP p1q
(

, W2,jkpu, vq — W3,jkpu, vq — ñ´1
jk h

´1
C

 

1` oP p1q
(

. (S.19)

16



Similarly, we can also show that

n
ÿ

i“1

!

Lij
ÿ

l“1

Lik
ÿ

m“1

g00

`

hC , pu, vq, pUijl, Uikmq
˘

)2

“

n
ÿ

i“1

Lij
ÿ

l“1

Lik
ÿ

m“1

K2
hC
pUijl ´ uqK

2
hC
pUikm ´ vq

`

n
ÿ

i“1

Lij
ÿ

l“1

Lik
ÿ

m1‰m

K2
hC
pUijl ´ uqKhC pUikm ´ vqKhC pUikm1 ´ vq

`

n
ÿ

i“1

ÿ

l‰l1

Lik
ÿ

m“1

KhC pUijl ´ uqKhC pUijl1 ´ uqK
2
hC
pUikm ´ vq

`

n
ÿ

i“1

Lij
ÿ

l‰l1

Lik
ÿ

m‰m1

KhC pUijl ´ uqKhC pUikm ´ vqKhC pUijl1 ´ uqKhC pUikm1 ´ vq

—

!

n
ÿ

i“1

`

LijLikh
´2
C ` L2

ijLikh
´1
C ` LijL

2
ikh

´1
C ` L2

ijL
2
ik

˘

)

 

1` oP p1q
(

. (S.20)

By (S.19) and (S.20), we obtain that

W 2
1,jk

n
ÿ

i“1

!

Lij
ÿ

l“1

Lik
ÿ

m“1

g00

`

hC , pu, vq, pUijl, Uikmq
˘

)2

— I´1
jk

 

1` oP p1q
(

, (S.21)

which together with Σjkpu, vq ´ rΣjkpu, vq “ oP p1q implies that Djk,2 “ oP p1q and Djk,3 “

oP p1q. Note that E
 

ZijlZikm ´ Σjkpu, vq
(2

is bounded. Together with (S.19) and (S.20),

we can also show that Djk,1pu, vq — 1 ` oP p1q. Combining the above results yields that

rΨ
p1q
jk — 1`oP p1q. In a similar fashion, we can also show that rΨ

piq
jk — 1`oP p1q for i “ 2, . . . , 6

in (S.16) and hence (S.18) follows.

(b) Verification of Condition 8. To verify the uniform convergence rate in Condition 8,

we need to refine our analysis above to construct the exponential type of tail bounds on

rΨjkpu, vq ´Ψjkpu, vq at each pu, vq P U2 rather than the consistency results in (a).

Consider the first term Djk,1pu, vq “ pñjkW1,jkq
2 ˆ Ijkñ

´2
jk

řn
i“1tV

p1q
00,ijku

2 in (S.17). Note

that by (S.19) ñjk|W1,jk| is bounded with an overwhelming probability. Suppose that

Xijp¨q’s are sub-Gaussian processes and εijl’s are independent sub-Gaussian errors. Since

tV
p1q

00,ijkpu, vq, i “ 1, . . . , nu forms an independent sequence, we can obtain the tail bound

on Djk,1pu, vq ´ EtDjk,1pu, vqu by calculating all q-th moments of ζijk “
 

V
p1q

00,ijkpu, vq
(2
´

17



E
“

tV
p1q

00,ijkpu, vqu
2
‰

for q “ 2, 3, 4, . . . under regularity conditions. Since ζijk’s are either sub-

Gaussian or sub-exponential, we can follow the similar techniques to prove Lemma 5 of Qiao

et al. (2020) by adopting a truncation technique and then applying Bernstein inequality

(Boucheron et al., 2014) to establish a rough exponential type of concentration inequality

(i.e., the equipped tail bound is in the same form of the exponential tail bound in (17))

for Djk,1pu, vq at each pu, vq P U2. Similarly, we can also derive the exponential type of

concentration inequality for the third term Djk,3pu, vq in (S.17).

Consider the second term Djk,2pu, vq in (S.17), which can be re-expressed as

Djk,2pu, vq “ 2IjkW
2
1,jk

n
ÿ

i“1

!

Lij
ÿ

l“1

Lik
ÿ

m“1

gab
`

hC , pu, vq, pUijl, Uikmq
˘

)2!

Σjkpu, vq ´ rΣjkpu, vq
)2

.

Note that it follows from (S.21) that IjkW
2
1,jk

řn
i“1

 
řLij

l“1

řLik

m“1 gabphC , pu, vq, pUijl, Uikmqq
(2

is bounded with an overwhelming probability. Then the exponential type of concentration

bound on Djk,2pu, vq at each pu, vq P U2 can be obtained through the exponential type tail

bound on Σjkpu, vq´ rΣjkpu, vq, which has been established in Qiao et al. (2020), see details

in proofs of its Lemmas 4 and 5 under the sparse and dense designs, respectively.

To derive the uniform (i.e., over U2) concentration inequality for rΨ
p1q
jk pu, vq in (S.17),

we can apply the partition technique that reduces the problem from supremum over U2 to

the maximum over a grid of pairs and then follow the similar developments to prove the

uniform concentration inequalities in Lemmas 4 and 5 of Qiao et al. (2020). In a similar

fashion to the above procedure, we can develop the corresponding exponential type of

uniform concentration inequality for rΨ
piq
jk pu, vq for i “ 2, . . . , 6. As a result, the exponential

type of uniform concentration inequality for rΨjkpu, vq can be obtained.

The uniform convergence rate in Condition 8 is implied by the exponential type of

uniform concentration inequalities for rΨjkpu, vq for each j, k, which partially depend on the

uniform concentration bounds on rΣjkpu, vq’s. In a similar spirit to the L2 concentration

bounds on rΣjkpu, vq’s implied by Condition 7, we consider the uniform convergence rate of
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rΣjkpu, vq,

max
1ďj,kďp

sup
u,vPU

ˇ

ˇ

ˇ

rΣjkpu, vq ´ Σjkpu, vq
ˇ

ˇ

ˇ
“ OP

˜

c

log p

n2γ1
` h2

¸

, (S.22)

which is satisfied if there exists some positive constants ci for i “ 6, . . . , 9 and γ1 P p0, 1{2s

such that for each j, k “ 1, . . . , p and t P p0, 1s,

P
!

supu,vPU |rΣjkpu, vq ´ Σjkpu, vq| ě t` c8h
2
)

ď c7n
c9 expp´c6n

2γ1t2q. (S.23)

Larger values of γ1 correspond to a more frequent measurement schedule and hence faster

rate in (S.22). For sparsely sampled functional data, it follows from Lemma 4 of Qiao

et al. (2020) and the same proof technique for j ‰ k that (S.23) holds by choosing γ1 “

1{2 ´ a and c9 “ 1 ` 2a with h — n´a for some positive constant a ă 1{2. For densely

sampled functional data, it follows from Lemma 5 of Qiao et al. (2020) and more efforts

for j ‰ k that (S.23) holds with the choice of γ1 “ minp1{2, 1{3 ` b{6 ´ ε1{2 ´ 2a{3q and

c9 “ maxp1, 2{3´ ε1´ b{3` 4a{3q for some small constant ε1 ą 0 when h — n´a and L — nb

for some positive constants a, b.

Following the proof procedure described above, we can establish exponential type of

uniform concentration inequality for rΨjkpu, vq for each j, k in the same form as (S.23)

but with different positive constants and in particular γ2 P p0, 1{2s, which will result in

the uniform convergence rate in Condition 8. It is worth mentioning that such heuristic

analysis can only help us establish uniform concentration inequalities for rΨjkpu, vq’s leading

to the sub-optimal rate. Investigating the corresponding optimal rate through the precise

specification of the largest values of γ2 under different measurement schedules or more

generally through n, h and possibly L for the dense case is quite challenging and remains

an open topic to be pursued in the future.
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E Additional empirical results

E.1 Applications of sparse covariance function estimation

In Section 2.3, we summarize the usefulness of our functional thresholding proposals in

more general statistical frameworks involving the sparse estimation of Σ to handle high-

dimensional functional data. In Sections E.1.1 and E.1.2, we conduct simulations to demon-

strate the significantly improved finite-sample performance of functional-thresholding-based

estimators using two applications of the sparse covariance function estimation including

multivariate FPCA (Happ and Greven, 2018) and multivariate functional linear regression

(Chiou et al., 2016), respectively.

E.1.1 Multivariate FPCA

Before presenting the methodology, we first solidify some notation. Denote the p-fold

Cartesian product defined on U by H “ L2pUq ˆ ¨ ¨ ¨ ˆ L2pUq. For any f ,g P H, we denote

the inner product by xf ,gy “
ş

U fpuqTgpuqdu and the induced norm }¨} “ x¨, ¨y1{2. Following

the proposal of Chiou et al. (2014) and Happ and Greven (2018), we consider a normalized

version of the Karhunen-Loéve expansion for multivariate functional data in (3), which

accounts for differences in degrees of variability among the components of the multivariate

random functions, i.e.

Xip¨q “

8
ÿ

l“1

ξilWφlp¨q,

where EtXip¨qu “ 0, the weight matrix W “ diagpw1, ¨ ¨ ¨ , wpq with each wj “ }Σjj}
1{2
N ,

tφlp¨qulě1 are a sequence of orthonormal functions with xφl,φl1y “ Ipl “ l1q, and ξil’s

are mean-zero principal component scores obtained via ξil “ xW
´1Xi,φly for l ě 1 with

covpξil, ξil1q “ πlIpl “ l1q. Here tpπl,φlp¨qqu
8
l“1 are eigenvalue/eigenfunction pairs satis-

fying
ş

U W´1Σpu, vqW´1φlpvqdv “ πlφlpuq and eigenvalues are sorted in descending or-

der π1 ě π2 ě ¨ ¨ ¨ ą 0. Let pΣ be some legitimate estimator of Σ, for example, we can

take pΣ as adaptive functional thresholding estimator pΣA (denoted as AdaFT) or univer-
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sal functional thresholding estimator pΣU (denoted as UniFT) or sample covariance func-

tion estimator pΣS (denoted as Sam). Define xW “ diagpŵ1, ¨ ¨ ¨ , ŵpq with ŵj “ }pΣjj}
1{2
N .

Performing eigen-decomposition on pΠpu, vq “ xW´1
pΣpu, vqxW´1, we obtain the estimated

eigenvalue/eigenvector pairs tpπ̂l, pφlp¨qqu
m
l“1 with π̂1 ě ¨ ¨ ¨ ě π̂m. It is worth mentioning that

the proposed functional thresholding estimators may not be positive-definite. To guarantee

the positive-definiteness of pΠ, we follow the technique adopted in Chen and Leng (2016)

to replace each π̂l with its adjusted version π̂l ´ π̂m if π̂m ă 0 before subsequent analysis.

We next present the data generating process. The multivariate functional data tXip¨qu
n
i“1

for p “ 50 and n “ 100, 200 are generated by the same procedure as in Section 5. Specif-

ically, we generate functional variables by Xijpuq “ spuqTθij for i “ 1, . . . , n, j “ 1, . . . , p

and u P U “ r0, 1s, where spuq is a 10-dimensional Fourier basis function and each

θi “ pθ
T

i1, . . . ,θ
T

ipq
T P R10p is sampled from a mean zero multivariate Gaussian distribution

with block covariance matrix Ω P R10pˆ10p. The pj, kq-th block of Ω is Ωjk “ ωjkD P R10ˆ10

with D “ pDll1q10ˆ10 “ diagp2, 1, 3´2 . . . , 10´2q for j, k “ 1, . . . , p, where ωjk’s are generated

according to Model 2 as specified in Section 5.

We examine the performance of multivariate FPCA based on AdaFT, UniFT and Sam

in terms of their relative estimation errors, i.e., |π̂l ´ πl|{πl (with m “ 300) for eigenvalues

and }pφl ´ signpxφl, pφlyq ¨ φl} for eigenfunctions. To be specific, pΣA and pΣU are computed

using the adaptive lasso (with η “ 3) functional thresholding rule with the associated

λ̂’s selected by fivefold cross-validation. The numerical results are summarized over 100

Monte Carlo runs. Figure 3 displays boxplots of the relative estimation errors for the top

7 eigenvalues and the corresponding eigenfunctions. A few trends are apparent. First,

two functional-thresholding methods give substantially improved accuracies for estimated

eigenpairs compared to the baseline Sam, which fails to detect the functional sparsity

pattern of Σ, and hence results in elevated estimation errors. Second, even with the

implementation of the weight matrix xW, AdaFT provides better overall performance than

UniFT especially for sufficiently large n. This again demonstrates the superiority of AdaFT
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Figure 3: Relative estimation errors of the top 7 eigenvalues (top row) and the corresponding

eigenfunctions (bottom row) for n “ 100 and 200 over 100 simulation runs.

over UniFT in the sense that pΣA can capture the pointwise variability of pΣjkpu, vq more

precisely.

E.1.2 Multivariate functional linear regression

We first present the methodology for multivariate functional linear regression in (4). Under

orthonormal basis functions tφlp¨qulě1, we expand the functional coefficient vector βp¨q “

ř8

l“1 κlW
´1φlp¨q, where κl “ xWβ,φly, and rewrite (4) as

Yi “

ż

U
Xipuq

Tβpuqdu` εi “
q
ÿ

l“1

ξilκl `
8
ÿ

l“q`1

ξilκl ` εi ” ξ
T

i κ`Ri ` εi,

where q is the truncated dimension, ξi “ pξi1, . . . , ξiqq
T and κ “ pκ1, . . . , κqq

T. Let Y “

pY1, . . . , Ynq
T P Rn and Ξ P Rnˆq with its row vectors given by ξ1, . . . , ξn. We further

represent (4) as

Y “ Ξκ`R` ε, (S.24)

where R “ pR1, . . . , Rnq
T P Rn and ε “ pε1, . . . , εnq

T P Rn correspond to the truncation and

the random errors, respectively. We implement standard three-step procedure to estimate
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βp¨q.

Step 1. Perform multivariate FPCA on tXip¨qu
n
i“1, thus obtaining estimated eigenfunctions

tpφlp¨qu and estimated principal component scores pξil “ xxW
´1Xi, pφly. Select q such

that the cumulative percentage of the largest q estimated eigenvalues exceeds 90%.

Step 2. Replace Ξ in (S.24) by pΞ “ ppξilqnˆq and obtain the least-squares estimator of κ as

pκ “ ppΞ
T
pΞq´1

pΞ
T

Y ” pκ̂1, . . . , κ̂qq
T.

Step 3. Recover the functional coefficient vector by pβp¨q “
řq
l“1 κ̂l

xW´1
pφlp¨q.

We next generate simulated data for model (4) using the same multivariate functional

predictors tXip¨qu
n
i“1 as in Section E.1.1. For each j, the associated functional coefficient

is generated by βjpuq “ spuqTbj, where components in bj “ pbj1, . . . , bj10q
T P R10 are

sampled from the uniform distribution with support r´rl,´0.5rls Y r0.5rl, rls and rl “ Dll

for l “ 1, . . . , 10. The scalar responses tYiu
n
i“1 are generated according to (4), in which the

random errors εt’s are sampled independently from N p0, 1q.

We assess the performance of AdaFT-, UniFT- and Sam-based methods in terms of both

estimation and prediction accuracies. We implement Step 1 following the same procedure

as in Section E.1.1 to estimate Σp¨, ¨q and then Steps 2–3 to estimate βp¨q. The estimation

and prediction accuracies are measured by the relative estimation error }pβ ´ β}{}β} and

root mean squared prediction error (rMSPE) of an independent test set tprXip¨q, rYiqu
200
i“1

generated by the same model, i.e. t
ř200
i“1px

rXi, pβy ´ rYiq
2{200u1{2, respectively. The simula-

tion is repeated over 100 runs. Table 8 reports the relative estimation errors of βp¨q and

rMSPEs for all three methods. For comparison, we also consider the oracle case, where βp¨q

is estimated by assuming that the true eigenpairs tπl,φlp¨qu are known in advance. The

observable trends from Table 8 are consistent to those from Figure 3. These results demon-

strate that AdaFT not only provides more accurate estimation of the covariance function

itself but also largely improves the accuracies of other covariance-function-based estimation

and prediction that arise from a range of high-dimensional functional data analysis prob-
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Table 8: The mean and standard error (in parentheses) of }pβ ´ β}{}β} and rMSPEs over 100

simulation runs.

AdaFT UniFT Sam Oracle

}pβ ´ β}{}β}

n “ 100 0.607(0.007) 0.612(0.007) 0.724(0.004) 0.551(0.007)

n “ 200 0.506(0.003) 0.510(0.003) 0.617(0.004) 0.483(0.004)

rMSPE

n “ 100 11.211(0.186) 11.300(0.198) 16.223(0.195) 9.418(0.192)

n “ 200 7.278(0.059) 7.335(0.059) 10.755(0.112) 5.818(0.069)

lems, for example, multivariate FPCA and multivariate functional linear regression with

large p.

E.2 Simulation studies

E.2.1 Fully observed functional data

Figure 4 displays the simulated trajectories of Xijp¨q for i “ 1 at a selection of j’s for

Models 1 and 2 with p “ 50. Figures 5 and 6 plot the heat maps of the frequency of the

zeros identified for the Hilbert–Schimidt norm of each entry of the estimated covariance

function, when p “ 50, out of 100 simulation runs. The true nonzero patterns of Models

1 and 2, and the corresponding Hilbert–Schmidt-norm based pseudo correlation matrix,

defined as
 

}Σjk}S{p}Σjj}S}Σkk}Sq
1{2
(

pˆp
, are presented in Figures 5(a), 6(a) and 7, re-

spectively. Tables 9 and 10 present numerical results in terms of estimation accuracy and

support recovery consistency of all competing approaches under Model 1. Figure 8 plots

some selected entries of Σ under Model 1 with p “ 50 together with their correspond-

ing pΣA and pΣU (the corresponding λ̂’s are selected by fivefold cross-validation using hard

functional thresholding rule), and pΣS of one simulation run. It is worth mentioning that

such design of Σ is able to mimic the positive and negative banding patterns in the HCP
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data analysis. See Figure 16 for details. Figure 9 displays the average receiver operating

characteristic (ROC) curves (plots of true positive rates versus false positive rates over a

sequence of λ values) for both the adaptive functional thresholding and universal func-

tional thresholding methods. These results again demonstrate the uniform superiority of

the adaptive functional thresholding method.
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Figure 4: Simulated dataset: X1jp¨q at j “ 10, 20, 30, 40, 50 for p “ 50.

E.2.2 Partially observed functional data

Tables 11 and 12 provide the estimation and support recovery performance of BinLLS-based

adaptive and universal functional thresholding estimators for the setting of p “ 50 under

Model 1. Tables 13 and 14 summarize the performance under both Models 1 and 2 for
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(a) True (b) Hard pΣA (c) Hard pΣU

(d) Soft pΣA (e) Soft pΣU (f) SCAD pΣA

(g) SCAD pΣU (h) Adap. lasso pΣA (i) Adap. lasso pΣU

Figure 5: Heat maps of the frequency of the zeros identified for the Hilbert–Schimidt norm of

each entry of the estimated covariance function (when p = 50) for Model 1 out of 100 simulation

runs. White and black correspond to 100/100 and 0/100 zeros identified, respectively.
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(a) True (b) Hard pΣA (c) Hard pΣU

(d) Soft pΣA (e) Soft pΣU (f) SCAD pΣA

(g) SCAD pΣU (h) Adap. lasso pΣA (i) Adap. lasso pΣU

Figure 6: Heat maps of the frequency of the zeros identified for the Hilbert–Schimidt norm of

each entry of the estimated covariance function (when p = 50) for Model 2 out of 100 simulation

runs. White and black correspond to 100/100 and 0/100 zeros identified, respectively.
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Figure 7: Heat maps of the pseudo correlation matrix (with p “ 50) for Models 1 and 2. The

color from white to blue corresponds to the value of }Σjk}S{p}Σjj}S}Σkk}Sq
1{2 from small to large.

Table 9: The average (standard error) functional matrix losses over 100 simulation runs.

p “ 50 p “ 100 p “ 150

Model Method pΣA
pΣU

pΣA
pΣU

pΣA
pΣU

1

Functional Frobenius norm

Hard 5.40(0.04) 11.90(0.02) 7.91(0.03) 17.27(0.01) 9.94(0.04) 21.36(0.01)

Soft 6.28(0.05) 10.40(0.08) 9.41(0.05) 16.53(0.07) 11.85(0.06) 21.16(0.04)

SCAD 5.68(0.05) 10.56(0.08) 8.53(0.05) 16.59(0.07) 10.80(0.06) 21.19(0.04)

Adap. lasso 5.28(0.04) 11.42(0.07) 7.76(0.04) 17.26(0.01) 9.72(0.04) 21.36(0.01)

Sample 19.82(0.04) 39.54(0.05) 59.28(0.06)

Functional matrix `1 norm

Hard 3.96(0.06) 9.23(0.01) 4.49(0.05) 9.31(0.01) 4.78(0.05) 9.34(0.01)

Soft 5.04(0.07) 8.14(0.08) 5.88(0.05) 9.15(0.02) 6.21(0.04) 9.31(0.01)

SCAD 4.40(0.08) 8.32(0.07) 5.35(0.06) 9.18(0.02) 5.75(0.05) 9.31(0.01)

Adap.lasso 3.85(0.06) 8.91(0.07) 4.52(0.05) 9.30(0.01) 4.83(0.06) 9.34(0.01)

Sample 26.60(0.13) 52.65(0.18) 78.69(0.22)
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Table 10: The average TPRs/ FPRs over 100 simulation runs.

p “ 50 p “ 100 p “ 150

Model Method pΣA
pΣU

pΣA
pΣU

pΣA
pΣU

1

Hard 0.71/0.00 0.00/0.00 0.66/0.00 0.00/0.00 0.64/0.00 0.00/0.00

Soft 0.89/0.08 0.47/0.17 0.85/0.04 0.22/0.05 0.84/0.03 0.06/0.01

SCAD 0.89/0.07 0.42/0.13 0.85/0.04 0.20/0.04 0.84/0.03 0.05/0.01

Adap. lasso 0.78/0.00 0.11/0.02 0.74/0.00 0.00/0.00 0.73/0.00 0.00/0.00
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Figure 8: Selected entries of Σ, pΣA, pΣU and pΣS of one simulation run (when p “ 50) for Model 1.

The corresponding λ̂’s of pΣA and pΣU are selected by fivefold cross-validation using hard functional

thresholding rule.
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Figure 9: Model 1 (top row) and Model 2 (bottom row) for p “ 50, 100, 150: Comparison of

the average ROC curves for adaptive functional thresholding (solid line) and universal functional

thresholding (dotted line) over 100 simulation runs.
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p “ 100. The same patterns as those from Tables 5–6 can be observed from Tables 11–14.

Table 11: The average (standard error) functional matrix losses for partially observed functional

scenarios and p “ 50 over 100 simulation runs.

Li “ 11 Li “ 21 Li “ 51 Li “ 101

Model Method qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

1

Functional Frobenius norm

Hard 7.78(0.03) 12.65(0.01) 6.61(0.04) 12.26(0.01) 5.83(0.04) 12.04(0.02) 5.57(0.04) 11.89(0.04)

Soft 8.69(0.04) 12.63(0.01) 7.64(0.05) 11.75(0.06) 6.94(0.05) 10.51(0.07) 6.71(0.05) 10.05(0.07)

SCAD 8.36(0.05) 12.63(0.01) 7.13(0.05) 11.80(0.06) 6.28(0.05) 10.67(0.07) 5.99(0.05) 10.27(0.07)

Adap. lasso 7.69(0.04) 12.64(0.01) 6.57(0.04) 12.21(0.02) 5.83(0.04) 11.54(0.08) 5.57(0.04) 11.05(0.10)

Functional matrix `1 norm

Hard 5.35(0.05) 9.36(0.01) 4.68(0.06) 9.30(0.01) 4.09(0.06) 9.24(0.02) 3.87(0.06) 9.13(0.05)

Soft 6.38(0.06) 9.35(0.01) 5.86(0.07) 8.94(0.05) 5.43(0.07) 8.13(0.08) 5.29(0.07) 7.84(0.08)

SCAD 6.12(0.07) 9.35(0.01) 5.40(0.08) 8.99(0.05) 4.78(0.08) 8.32(0.07) 4.56(0.08) 8.09(0.07)

Adap.lasso 5.31(0.07) 9.36(0.01) 4.71(0.07) 9.28(0.02) 4.15(0.07) 8.89(0.07) 3.98(0.07) 8.59(0.09)

Table 12: The average TPRs/ FPRs for partially observed functional scenarios and p “ 50 over

100 simulation runs.

Li “ 11 Li “ 21 Li “ 51 Li “ 101

Model Method qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

1

Hard 0.63/0.00 0.00/0.00 0.66/0.00 0.00/0.00 0.69/0.00 0.01/0.00 0.71/0.00 0.03/0.00

Soft 0.85/0.05 0.01/0.00 0.87/0.07 0.22/0.09 0.89/0.08 0.5/0.17 0.89/0.08 0.57/0.18

SCAD 0.86/0.06 0.01/0.00 0.87/0.07 0.2/0.07 0.88/0.07 0.45/0.14 0.89/0.07 0.51/0.14

Adap. lasso 0.72/0.00 0.00/0.00 0.75/0.00 0.01/0.00 0.77/0.00 0.12/0.02 0.78/0.00 0.20/0.03

E.3 ADHD dataset

In this section, we illustrate our adaptive functional thresholding estimation using the

ADHD-200 Sample, collected by New York University Medical Center. This dataset con-

sists of resting-state fMRI scans with Blood Oxygenation Level-Dependent (BOLD) signals

recorded every 2 seconds in the whole brain with L “ 172 locations in total, for nADHD “ 90
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Table 13: The average (standard error) functional matrix losses for partially observed functional

scenarios and p “ 100 over 100 simulation runs.

Li “ 11 Li “ 21 Li “ 51 Li “ 101

Model Method qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

1

Functional Frobenius norm

Hard 11.40(0.03) 18.34(0.01) 9.63(0.03) 17.80(0.01) 8.55(0.04) 17.51(0.01) 8.17(0.04) 17.42(0.01)

Soft 12.79(0.05) 18.33(0.01) 11.28(0.05) 17.71(0.02) 10.33(0.05) 16.68(0.07) 10.01(0.05) 16.06(0.07)

SCAD 12.41(0.05) 18.33(0.01) 10.58(0.05) 17.72(0.02) 9.42(0.05) 16.77(0.06) 9.01(0.05) 16.23(0.07)

Adap. lasso 11.22(0.04) 18.33(0.01) 9.59(0.04) 17.79(0.01) 8.54(0.04) 17.49(0.01) 8.19(0.04) 17.34(0.03)

Functional matrix `1 norm

Hard 5.97(0.05) 9.41(0.01) 5.15(0.05) 9.35(0.01) 4.70(0.05) 9.33(0.01) 4.53(0.05) 9.32(0.01)

Soft 7.06(0.04) 9.41(0.01) 6.55(0.05) 9.34(0.01) 6.23(0.05) 9.19(0.02) 6.12(0.05) 9.02(0.03)

SCAD 6.93(0.05) 9.41(0.01) 6.20(0.05) 9.34(0.01) 5.74(0.05) 9.23(0.02) 5.56(0.05) 9.11(0.03)

Adap.lasso 6.00(0.05) 9.41(0.01) 5.32(0.06) 9.35(0.01) 4.89(0.06) 9.32(0.01) 4.74(0.06) 9.32(0.01)

2

Functional Frobenius norm

Hard 13.21(0.04) 17.03(0.01) 11.33(0.04) 16.40(0.01) 10.06(0.04) 16.06(0.01) 9.60(0.04) 15.96(0.01)

Soft 13.54(0.04) 17.01(0.01) 12.06(0.04) 16.26(0.02) 11.10(0.04) 15.32(0.05) 10.75(0.04) 14.86(0.05)

SCAD 13.50(0.04) 17.01(0.01) 11.90(0.04) 16.26(0.02) 10.78(0.04) 15.35(0.05) 10.36(0.04) 14.93(0.05)

Adap. lasso 12.61(0.04) 17.01(0.01) 10.94(0.04) 16.39(0.01) 9.80(0.04) 15.99(0.02) 9.37(0.04) 15.81(0.03)

Functional matrix `1 norm

Hard 6.14(0.04) 7.27(0.01) 5.49(0.04) 7.19(0.01) 5.01(0.05) 7.16(0.01) 4.83(0.05) 7.15(0.01)

Soft 6.22(0.02) 7.26(0.01) 5.90(0.03) 7.16(0.01) 5.65(0.03) 7.03(0.02) 5.55(0.03) 6.97(0.02)

SCAD 6.21(0.02) 7.26(0.01) 5.87(0.03) 7.16(0.01) 5.58(0.03) 7.04(0.02) 5.45(0.03) 6.99(0.02)

Adap. lasso 5.88(0.04) 7.26(0.01) 5.42(0.04) 7.19(0.01) 5.04(0.04) 7.15(0.01) 4.87(0.04) 7.14(0.01)

Table 14: The average TPRs/ FPRs for partially observed functional scenarios and p “ 100 over

100 simulation runs.

Li “ 11 Li “ 21 Li “ 51 Li “ 101

Model Method qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

qΣA
qΣU

1

Hard 0.57/0.00 0.00/0.00 0.62/0.00 0.00/0.00 0.65/0.00 0.00/0.00 0.66/0.00 0.00/0.00

Soft 0.80/0.03 0.00/0.00 0.83/0.04 0.03/0.01 0.85/0.04 0.24/0.05 0.85/0.04 0.36/0.07

SCAD 0.81/0.03 0.00/0.00 0.84/0.04 0.03/0.01 0.85/0.04 0.22/0.04 0.85/0.04 0.32/0.06

Adap. lasso 0.67/0.00 0.00/0.00 0.71/0.00 0.00/0.00 0.73/0.00 0.00/0.00 0.74/0.00 0.01/0.00

2

Hard 0.48/0.00 0.00/0.00 0.57/0.00 0.00/0.00 0.65/0.00 0.00/0.00 0.68/0.00 0.00/0.00

Soft 0.90/0.03 0.00/0.00 0.94/0.04 0.07/0.01 0.96/0.04 0.29/0.04 0.97/0.04 0.40/0.05

SCAD 0.90/0.03 0.00/0.00 0.95/0.04 0.06/0.01 0.96/0.05 0.28/0.03 0.97/0.05 0.37/0.04

Adap. lasso 0.70/0.00 0.00/0.00 0.78/0.00 0.00/0.00 0.83/0.00 0.02/0.00 0.85/0.00 0.03/0.00
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patients diagnosed with attention-deficit/hyperactivity disorder (ADHD) and nTDC “ 87

typically-developing controls (TDC). The preprocessing of the raw fMRI data is performed

by Neuro Bureau using the Athena pipeline (Bellec et al., 2017). See Figure 11 in Sec-

tion E.4 for plots of pre-smoothed BOLD signals at a selection of ROIs. Following Li and

Solea (2018) based on the same dataset, we treat the signals at different ROIs as multivari-

ate functional data. Our goal is to construct resting state functional connectivity networks

among p “ 116 ROIs (Tzourio-Mazoyer et al., 2002), with the first 90 ROIs from the

cerebrum and the last 26 ROIs from the cerebellum, for ADHD and TDC groups, respec-

tively. To this end, we implement adaptive and universal functional thresholding methods

to discover the networks for two groups.

Figure 10 plots the sparsity patterns in estimated covariance functions corresponding

to identified functional connectivity networks. We observe several interesting patterns.

First, with λ̂ selected by the cross-validation, pΣA in Fig. 10(a)–(b) reveal clear blockwise

connectivity structures with two blocks coinciding with the regions of the cerebrum and the

cerebellum, while pΣU in Fig. 10(c)–(d) result in very sparse networks. Second, under the

same sparsity levels as those of pΣA in Fig. 10(a)–(b), pΣU in Fig. 10(e)–(f) only retain edges

related to large marginal-covariance functions but fail to identify some essential within-

network connections, e.g., those of the cerebellar region (Dobromyslin et al., 2012) on the

bottom right corner. Third, the ADHD group has increased connections relative to the

TDC group, which is in line with the finding in Konrad and Eickhof (2010) that ADHD

patients tend to exhibit abnormal spontaneous functional connectivity patterns.

E.4 Additional real data results

Figures 11 and 12 display the pre-smoothed BOLD signal trajectories at a selection of

ROIs of subjects from the ADHD and HCP datesets, respectively. Moreover, we zoom

in on a randomly selected subinterval p0.5, 0.6q of time r0, 1s in Figure 12 and plot the

pre-smoothed BOLD signals during this subinterval in Figure 13. It is evident that the
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(a) ADHD: pΣA (57.50% zeros)

(b) TDC: pΣA (71.24% zeros)

(c) ADHD: pΣU (98.94% zeros)

(d) TDC: pΣU (98.85% zeros)

(e) ADHD: pΣU (57.50% zeros)

(f) TDC: pΣU (71.24% zeros)

Figure 10: The sparsity structures in pΣA and pΣU for ADHD and TDC groups: (a)–(d) with

the corresponding λ̂ selected by fivefold cross-validation using soft functional thresholding rule;

(e)–(f) with the same sparsity levels as those in (a)–(b). Black corresponds to non-zero entries of

pΣA and pΣU (identified edges connecting a subset of ROIs).
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smoothed signal trajectories are directly available after the standard preprocessing step

following the existing neuroscience literature. Figures 14 and 15 plot the connectivity

strengths at fluid intelligence gF ď 8 and gF ě 23 in Fig. 1(a)–(b) and Fig. 1(c)–(d),

respectively. We observe that as gF increases, the connectivity strengths in the medial

frontal and frontoparietal modules tend to increase while those in the default mode module

decrease, which is consistent with our finding in Section 6. Finally, we present in Figure 16

some randomly selected entries of pΣA in Fig. 1 (c)–(d) during the same subinterval p0.5, 0.6q.

The dynamic structures of the estimated covariance surfaces are observable in the sense

that the values of pΣA
jk change from positive to negative (or from negative to positive) as a

function of pu, vq along some directions. In particular, there seems to exist an interesting

common positive and negative banding pattern as |u´ v| varies in the presented entries.
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Figure 11: ADHD dataset: the smoothed BOLD signals at the first 5 ROIs of two subjects

in ADHD and TDC groups respectively. The 5.73-minute interval with 172 scanning points is

rescaled to r0, 1s.
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Figure 12: HCP dataset: the smoothed BOLD signals at the first 5 ROIs of one subject. The

14.40-minute interval with 1200 scanning points (14.40 mins) is rescaled to r0, 1s.
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Figure 13: HCP dataset: the smoothed BOLD signals in Fig. 12 during (0.5,0.6).
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(a) gF ď 8: the medial frontal module in Fig. 1(a)

L R

L R

(b) gF ď 8: the frontoparietal module in Fig. 1(a)

L R

L R

(c) gF ď 8: the default mode module in Fig. 1(a)

L R

L R

(d) gF ě 23: the medial frontal module in Fig. 1(b)

L R

L R

(e) gF ě 23: the frontoparietal module in Fig. 1(b)

L R

L R

(f) gF ě 23: the default mode module in Fig. 1(b)

Figure 14: The connectivity strengths in Fig. 1(a)–(b) at fluid intelligence gF ď 8 and gF ě 23.

Salmon, orange and yellow nodes represent the ROIs in the medial frontal, frontoparietal and

default mode modules, respectively. The edge color from cyan to blue corresponds to the value

of }pΣA
jk}S{p}

pΣA
jj}S}

pΣA
kk}Sq

1{2 from small to large.
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(a) gF ď 8: the medial frontal module in Fig. 1(c)

L R

L R

(b) gF ď 8: the frontoparietal module in Fig. 1(c)

L R

L R

(c) gF ď 8: the default mode module in Fig. 1(c)

L R

L R

(d) gF ě 23: the medial frontal module in Fig. 1(d)

L R

L R

(e) gF ě 23: the frontoparietal module in Fig. 1(d)

L R

L R

(f) gF ě 23: the default mode module in Fig. 1(d)

Figure 15: The connectivity strengths in Fig. 1(c)–(d) at fluid intelligence gF ď 8 and gF ě 23.

Salmon, orange and yellow nodes represent the ROIs in the medial frontal, frontoparietal and

default mode modules, respectively. The edge color from cyan to blue corresponds to the value

of }pΣA
jk}S{p}

pΣA
jj}S}

pΣA
kk}Sq

1{2 from small to large.
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Figure 16: Selected entries of pΣA in Fig. 1 (c)–(d) during (0.5,0.6).
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