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Abstract

We propose a two-step procedure to model and predict high-dimensional functional
time series, where the number of function-valued time series p is large in relation to
the length of time series n. Our first step performs an eigenanalysis of a positive
definite matrix, which leads to a one-to-one linear transformation for the original high-
dimensional functional time series, and the transformed curve series can be segmented
into several groups such that any two subseries from any two different groups are
uncorrelated both contemporaneously and serially. Consequently in our second step
those groups are handled separately without the information loss on the overall linear
dynamic structure. The second step is devoted to establishing a finite-dimensional
dynamical structure for all the transformed functional time series within each group.
Furthermore the finite-dimensional structure is represented by that of a vector time
series. Modelling and forecasting for the original high-dimensional functional time
series are realized via those for the vector time series in all the groups. We investigate
the theoretical properties of our proposed methods, and illustrate the finite-sample

performance through both extensive simulation and three real datasets.
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1 Introduction

Functional time series typically refers to continuous-time records that are naturally divided
into consecutive time intervals, such as days, months or years. With recent advances in
data collection technology, multivariate or even high-dimensional functional time series arise
ubiquitously in many applications, including daily pollution concentration curves over differ-
ent locations, annual temperature curves at different stations, annual age-specific mortality
rates for different prefectures, and intraday energy consumption trajectories from differ-
ent households. Those data can be represented as a p-dimensional functional time series
Yi(u) = {Ya(u),...,Yi(u)}" defined on a compact set u € U, and we observe Y,(-) for
t =1,...,n. In this paper we tackle the high-dimensional settings when the dimension p
is comparable to, or even greater than, the sample size n, which poses new challenges in
modelling and forecasting Y (-).

By assuming Y, () is stationary, a conventional approach is first to extract features by per-
forming dimension reduction for each component series Y;;(-) separately via, e.g., functional
principal component analysis (FPCA) or dynamic FPCA (Hormann et al., 2015; Bathia
et al., 2010), and then to model p vector time series by, e.g., regularized vector autoregres-
sions (Guo and Qiao, 2023; Chang et al., 2022) or factor model (Gao et al., 2019). However,
more effective dimension-reduction can be achieved by pulling together the information from
different component series in the first place. This is in the same spirit of multivariate FPCA
(Chiou et al., 2014; Happ and Greven, 2018) (for fixed p) and sparse FPCA (Hu and Yao,
2022), though those approaches make no use of the information on the serial dependence
which is the most relevant for future prediction.

To achieve a more effective dimension-reduction by incorporating the information on the



serial dependence across different component series, we propose in this paper a two-step
approach. Our first step is a segmentation step in which we seek for a linear transformation
Y.(-) = AZ(), where A is a p x p invertible constant matrix, such that the transformed
series Zy(+) = {Zgl)(-)T, ce Z,gq)(-)T}T can be segmented into ¢ groups Z,El)(-), ce ZEQ)(-), and

curves subseries Zgi)(-) and ZV )() are uncorrelated at all time lags for any i # j, i.e.
Cov{Z\"(u), 27 (v)} =0, (u,v) eU? and k=0,+1,+2, ... .

Hence each fo’ can be modelled and forecasted separately as far as the linear dynamics is
concerned. Under the stationarity assumption, the estimation of the transformation matrix
A boils down to the eigenanalysis of a positive definite matrix defined by the double integral
of quadratic forms in the autocovariance function of Y,(-). An additional permutation on
the components of Z,(-) will be specified in order to identify the latent group structure.
Our second step is to identify a finite-dimensional dynamic structure for each transformed

subseries Zgl)(-) separately, which is based on a latent decomposition

2 () = XP(w) + e (u), wel, (1)

where X\"(-) represents the dynamics of zﬁ”(.), sgl)(‘) is white noise in the sense that

E{e’(u)} = 0 and E{e!”(w)e’(v)} = 0 for any (u,v) € U2 and t # s, and {X" ()},
are uncorrelated with {sgl)(-)}?:l. Furthermore we assume that the dynamic structure of
Xgl)() admits a vector time series presentation via a variational multivariate FPCA. For
given {Z{"(-)}7_,, the standard multivariate FPCA performs dimension reduction based on
the eigenanlysis of the sample covariance function of Zgl)(-), which cannot be used to iden-
tify the finite-dimensional dynamic structure of X{”(-) due to the contamination of &\’ (-).
Inspired by the fact that the lag-k (k # 0) autocovariance function of ZEZ)(-) automatically
filters out the white noise, our variational multivariate FPCA is based on the eigenanalysis
of a positive-definite matrix defined in terms of its nonzero lagged autocovariance functions;

leading to a low-dimensional vector time series which bears all the dynamic structure of



Xgl)(~), and consequently, also that of Zgl)(~). This is possible as the number of compo-
nents in each Zgl)(-) is small. Finally, owing to the one-to-one linear transformation in the
segmentation step, the good predictive performance of Z,(-) can be easily carried back to
Y.:(-).

The new contribution of this paper is threefold. First, the segmentation transformation in
the first step transforms the serial correlations across different series into the autocorrelations
within each of the identified ¢ subseries. This not only avoids the direct modelling of the p
functional time series together, but also makes each of those subseries more serially correlated
and, hence, more predictable. As the serial correlations across different series are valuable
for future prediction, the segmentation provides an effective way to use the information.
Note that the prediction directly based on a multivariate ARMA-type model with even a
moderately large dimension is not recommendable, as the gain from using the correlations
across different component series is often cancelled off by the errors in estimating too many
parameters. On the other hand, the assumed segmentation structure may not exist. The
proposed estimation method will then lead to an approximate segmentation which neglects
small and, therefore, practically intractable correlations. Such an approximation often yields
more accurate future predictions than those based on the models without segmentation. See
the empirical studies in Sections 5 and 6. Though the segmentation transformation is based
on the same idea of the PCA for vector time series of Chang et al. (2018), our proposal relies
on the double integral to take full advantage of the functional nature of the data by gathering
the autocovariance information over (u,v) € U?. Secondly, aided by the enforced sparsity, we
propose a novel functional thresholding procedure, which guarantees the consistency of our
estimation under the high-dimensional regime. Thirdly, the nonzero lagged autocovariance-
based dimension reduction approach in the second step makes the good use of the serial
dependence information in our estimation, which is most relevant in the context of time

series. Our proposal extends the univariate method of Bathia et al. (2010) by taking into



account the cross-autocovariance to accommodate multivariate functional time series.

Our work lies in the intersection of two strands of literature: functional time series
and high-dimensional time series. In the context of functional time series, many standard
univariate or vector time series theory and methods have been adapted to the functional
domain, see, among others, Bathia et al. (2010), Panaretos and Tavakoli (2013), Aue et al.
(2015), Hérmann et al. (2015), Li et al. (2020), Jiao et al. (2021), and references within. In
the context of high-dimensional time series, the available methods to reduce the number of
parameters can be loosely divided into three categories: (i) regularization (Han et al., 2015;
Basu and Michailidis, 2015; Guo et al., 2016; Ghosh et al., 2019; Wilms et al., 2021), (ii)
dimension reduction via factor model (Bai and Ng, 2002; Forni et al., 2005; Lam and Yao,
2012; Stock and Watson, 2012; Chang et al., 2015; Fan et al., 2016), and (iii) independent
component analysis (Tiao and Tsay, 1989; Back and Weigend, 1997; Matteson and Tsay,
2011; Chang et al., 2018; Han et al., 2022). Since the literature in each category is large, we
can only include a selection of references here.

The rest of the paper is organized as follows. In Section 2, we develop the methods
employed in Step 1, i.e. the segmentation transformation, the permutation and the func-
tional thresholding. Section 3 specifies the dimension reduction method used in Step 2. We
investigate the associated theoretical properties of the proposed methods in Section 4. The
finite-sample performance of our methods are examined through extensive simulations in
Section 5. Section 6 applies our proposal to three real datasets, revealing its superior predic-
tive performance over most frequently used competitors. All technical proofs are relegated
to the supplementary material.

Notations. Denote by I(-) the indicator function. For a positive integer m, write
[m] = {1,...,m} and denote by I,, the identity matrix of size m x m. For x,y € R, we use
x v y = max(z,y). For two positive sequences {a,} and {b,}, we write a,, < b, or b, » a,

if limsup,,_,, a,/b, = 0. For a p x ¢ real matrix B, denote by BT its transponse, and write



B®? = BB" and |B|, = )\IIIQX(BTB), where A\pax(M) denotes the largest eigenvalue of the
matrix M. Let L*(U/) be a Hilbert space of squared integrable functions defined on U and
equipped with the inner product (F,§) = {, F(u)G(u) du for F,§ € Ly(U) and the induced
norm | - | = (-, )2, For any B in the tensor product S = L*(U) ® L*(U), we denote the

Hilbert-Schmidt norm by |B|s = {§, §, B*(u,v) dudv}*/>.

2 Segmentation transformation

In this section, we seek for a p x p constant matrix A such that
Yi(u) = AZ,(u) = A{ZP (W), ... 29w}, wel, (2)

where ¢ < p is an unknown positive integer, Zgl)(~) is a p;-dimensional functional time series
with each p; = 1 and Y}/ | p, = p, and Cov{Zgl) (u), Zg/)(v)} =0 for all t,s € [n], | # I’ and

(u,v) € U?. We also assume that maxep,) §,, E{Z7(u)} du = O(1). Then it holds that
3, k(u,v) = Cov{Yi(u), Yiir(v)} = ACov{Zi(u), Zisk(v) AT = AS, p(u,v)AT,  (3)

where 3, j(u, v) is block-diagonal with the blocks on the main diagonal of sizes py xp1, . . ., pgx
Py-

We consider orthogonal transformations only, i.e., ATA = AA" =1, as we can replace
(Y, Z) in (2) by (V,*Y,, V:'?Z,), where V,, = §y Zyo(u,u)duand V, = § 3. o(u, u) du.

Then A is replaced by V, Y2 AVY? which is an orthogonal matrix as
I, = J Var{V,?Y,(u)} du = f Var{V;'?Z,(u)} du. (4)
u u

Note we can take V3 "/ 2Zt as Z; since they share the same block structure. In practice, we
can replace observations Y; by \A/'; Y QYt, where \Afy is a consistent estimator of V,,.
Write A = (Ay4,...,A,), where A; has p; columns. Then
l
Z{(u) = A{Y(u), lelq]. (5)

6



Even with the orthogonality constraint, A cannot be identified uniquely in (2), as within-
block rotations will not distort the uncorrelated block structure. In fact only the linear

spaces spanned by the columns of A;, denoted by C(A,), [ € [q], are uniquely defined by (2).

2.1 Estimation procedure

We consider how to estimate A = (Ay,...,A,) in (2). For a given integer ko > 1, let

JJ zkuv@dudv and W, ZJJ ykuv@dudv (6)

Then both W, and W, are non-negative definite. Due to AAT = I,,, by (3) and (6),
W.=ATW,A. (7)

As all 3, ;. (u,v) for k > 0 and (u,v) € U* are block-diagonal matrices of the same sizes,
so is W,. Perform the eigenanalysis for each of ¢ blocks on the main diagonal of W,
separately, leading to ¢ orthogonal matrices of sizes p; x p; for [ € [g]. The columns of each
of those orthogonal matrices are the p; orthonormal eigenvectors from the corresponding
eigenanalysis. Line up those ¢ orthogonal matrices as the blocks for a main diagonal, to form
a p x p block diagonal orthogonal matrix I',. Then the columns of I, are the orthonormal
eigenvectors of W, i.e.

W.T,=T.D, (8)

where D is a diagonal matrix consisting of the p eigenvalues. Then by (7) and (8), W,ATI', =
AW.T', = AT'.D. Thus the columns of I'y = AT, are the orthonormal eigenvectors of W,,.

Combining this with (2) yields that
L)Y,() = TIATY () = TUZ(). (9)

Since T, is a block-diagonal orthogonal matrix with ¢ blocks, T']Z,(-) effectively applies
orthogonal transformation within each of the ¢ groups of Z;(-). Thus I']Z,(:) is of the

same segmentation structure of Z,(-), i.e. knowing I'] Z;(-) is as good as knowing the latent

7



segmentation of Z;(-). Hence I’y can be taken as the required transformation matrix A; see

(9). We summarize the above finding in Proposition 1 below.

Proposition 1. (i) The orthogonal matriz T, in (8) can be of the same block-diagonal form
as W.

(ii) An orthogonal matriz T, satisfies (8) if and only if its columns are a permutation
of the columns of a block-diagonal orthogonal matriz described in (i), provided that any two

different main diagonal blacks in W, do not share the same eigenvalues.

Let f)%k(u, v) be some consistent estimator of %, ,(u,v) for k € {0} U [ko], to be specified

in Section 2.2 below. We define an estimator of W, as

ko
W, = ZJ J 3,k (u,v)®? dudw, (10)
k=0JU YU
and calculate its orthonormal eigenvectors 7y,...,7,. Let f‘y = (My,.--,Mm,). By (9) and

Proposition 1, A should be a (latent) column-permutation of f‘y. More specifically, put

AT

Z:()={Zu(),. .. Zy()} =T, Yu(). (11)

We propose below a data-driven procedure to divide the p components of Zt() into ¢ uncor-
related groups.

Write 2. 5(-,-) = {E.r4(-, ) ijep)- Recall Ze(-) = {Zu(:),..., Zyp(-)}". For two curve
series Zy(-) and Z;;(-) within the same group, one would expect that their lag-k cross-
autocovariance function 3, j;;(u,v) to be significantly different from zero for some integer
k and (u,v) € U?, thus leading to at least one large |3, 4 ;|s for some integer k. Based
on Z() defined as (11), we let ﬁz,k(u,v) = {f]zyk,ij(u,v)}me[p] = f‘;ﬁy,k(u,v)f‘y for any
(u,v) € U?. Given a fixed integer m > 0, we define the maximum cross-autocovariance over

the lags between prespecified —m and m as

Ty = max |3, 14 s (12)

|k|<m



for any pair (i,7) € [p]? such that i < j, and regard Zy(-) and Zj(') from the same group
if ﬁ-j takes some large value. To be specific, we rearrange X = p(p — 1)/2 values of f}j

(1 <i < j < p)in the descending order f(l) > > f(N) and compute

A~

T(j) + 0,

0 = arg max ~————— (13
Je[R] T(]+1) + 571 )
for some 9, > 0. Corresponding to f(l), e ,f@), we identify o pairs of cross-correlated

curves. To divide the p components of it() into several uncorrelated groups, we can first
start with p groups with each th (+) in one group and then repeatedly merge two groups if two
cross-correlated curves are split over the two groups. The iteration is terminated until all the
cross-correlated pairs are within one group. Hence we obtain the estimated group structure
of Z() with the number of the final groups ¢ being the estimated value for ¢q. Denote by
ZE’)(.) the estimated I-th group for [ € [¢]. The transformation matrix A = (A,... ,A(j)

can then be found by reorganizing the order of (7, ...,n,) such that
5 A .
Z() = AjYi(). leldl. (14)

Remark 1. (i) We include a small term d,, > 0 in (13) to stabilise the estimates for ‘0/0’.
Given a suitable order of d,,, we can establish the group recovery consistency. See Theorem 1
in Section 4. A common practice is to set ¢, = 0 and replace X by ¢,X in (13) for some
constant ¢, € (0,1), see Lam and Yao (2012); Ahn and Horenstein (2013); Chang et al.
(2018).

(ii) All integrated terms in W,, are non-negative definite. Hence there is no information
cancellation over different lags. Therefore the estimation is insensitive to the choice of k.
In practice a small ky (such as kg < 5) is often sufficient, while further enlarging ko tends to

add more noise to W,,.



2.2 Selection of f]yk(u,v)

The estimate fly,k(u, v) plays a key role in Section 2.1. A natural candidate for f)y,k(u, v) is

the sample version of 3, (u, v) defined as
35 i (u,0) k Z{Yt (WHYr(v) =Y ()}, ke {0} [ko]. (15)

When p?/n — 0, Z}y (1, v) is a valid estimator for X, ;(u,v). However when p grows faster
than n'/2, it does not always hold that HZy p(u,v) =2,k (u,v)|2 — 0 in probability. We then
impose some sparsity condition on the orthogonal transformation matrix A, which will pass
onto the autocovariance functions X, (-, -), as 3, x(-, ) = AX, (-, )A".

Inspired by the spirit of threshold estimator for large covariance matrix (Bickel and Lev-
ina, 2008), we apply the functional thresholding rule, that combines the functional general-
izations of hard thresholding and shrinkage with the aid of the Hilbert—Schmidt norm of func-
tions, on the entries of the sample autocovariance function f];k( v) = {Zy i (s V) Y jefp]

in (15). This leads to the estimator

T (350) (w,v) = [25 455 (w, 0) IS kisls = ] e (o) €U, (16)

where wy, > 0 is the thresholding parameter at lag k. Taking iy,k(w -)in (10) as Ty, (izk)(, )

yields

f J Ezk (u,v)®? dudv . (17)
Remark 2. The thresholding parameter wy for each k € {0} U [ko] can be selected using
an L-fold cross-validation approach. Specifically, we sequentially divide the set [n] into L
validation sets Vi,...,Vy of approximately equal size. For each [ € [L], let ﬁz%)(u,v) =
{izg)” (u,v)}5 je[p) and fl;:gc_l) (u,v) = {i;g;lj) (u,v)}; jerp) be the sample lag-k autocovaraince

functions based on the I-th validation set {Y,(-) : t € V;} and the remaining L — 1 sets

{Y:(-) : t € [n]\V}}, respectively. We select the optimal @y, by minimizing
p

S7(7l) 2
Error(ws) 2 ~ Zykijls

10



where 7, (= b Yu,v) = 53 b

ki i (s o) I{[S ls = wi}. Given the time break from the

ykz]‘

leave-out validation set, the autocovariance estimation based on the remaining L — 1 groups

is affected by ky misutilized lagged terms. However, this effect is negligible for large n.

3 Identifying finite-dimensional structure of transformed
curve subseries

Our Step 2 is to represent (linear) dynamic structure of each Z,gl)(-), obtained in Step 1, in
terms of a vector time series via representation (1). The key idea is to identify the finite

decomposition for Xgl)(-). For (u,v) e U? and k = 0, let u®(u) = IE{X,EZ) (u)} and

M (u,v) = E[{X{" (u) — p®@ () X, (v) — p@(0)}7].

Then the multivariate Karhunen-Loeve decomposition for Xgl) (+) serving as the foundation

of multivariate FPCA (Chiou et al., 2014; Happ and Greven, 2018) admits the form

0
! ) (1 ! ! !
My (u,0) = 332 0 we 0) X () — pOu 2 &) (). (18)
j=1
where )\gl) > )\g) > --- = 0 are the ordered eigenvalues of the covariance function M(()l)(-, ),

gogl) (+), gog) (), ... are the corresponding orthonormal eigenfunctions satisfying §,, goy) (u)Tgo,(f) (u)du =

1(G = ), and &) = 5,0, ()X () — pO ()} du with B{&7} = 0 and Cov{gy, )} =
0]
AT (j =k).
When XEZ)(-) is r-dimensional in the sense that A&? > 0 and )\g)ﬂ = 0, the dynam-
ics of Xgl)(') is entirely determined by that of r-vector time series £ = (v . ,§§2}T

Unfortunately, under the latent decomposition (1), i.e.

ZV (W) = XY () + e (w) = pO(u) + Z VeV (u) + e (w), weld, (19)

the standard multivariate FPCA based on (18) is inappropriate as X"() is unobservable

and we cannot provide a consistent estimator for M(()l)( v) based on Z ( ) due to the fact

11



Cov{Zgl) (u), Z,El)(v)} = M((]l) (u,v) + Cov{egl) (u), egl)(v)}. A possible solution to deal with the
difficulty is to delineate the dynamic structure of Xgl)(-) by subtracting Cov{agl) (u), el (v)}
from Cov{Z" (u), Z{" (v)}. To this end, a common practice is to assume that the covariance
function of egl)(') is diagonal (Yao et al., 2005) or banded (Descary and Panaretos, 2019),
which is too restrictive in practice.

Now we introduce the variational multivariate FPCA based on a variational multivariate
Karhunen-Loeéve decomposition for Xgl)(-). Motivated from the fact Cov{Zgl) (u), ng(v)} =

M,(Cl) (u,v) for any k > 1, for a prespemﬁed small integer ky > 1, we define
KO (u,v) JM u, w)M ()(’U w)" dw . (20)

Note that K® can be viewed as the kernel of the induced linear operator. For notational
economy, we will use K to denote both the kernel and the operator. Similar to M(()), K®

is also a non-negative definite operator which admits a spectral decomposition

o0
IRC !
KO (u,0) = 3004 )y ()", (21)
j=1
where 9§” > 9&” > ... > 0 are the eigenvalues of K, and 1,[151)(-), ng”(-), ... are the corre-

sponding orthonormal eigenfunctions. Let &\ = {ftl . ,Q%}T and Qg) = ]E[sﬁ”{sﬂkm
It then follows from Proposition 2 below that, under the expansion (19), the operator K

has exactly r; nonzero eigenvalues, and the dynamic space spanned by {ng“(-), R VICI)!

T

remains the same as that spanned by {gogl)('), ce <p$,)( )}

Proposition 2. Let Qg) be a full-ranked matriz for some k € [ko|. Then it holds that (i)

01 > 0 and 6,)., = 0; (ii) span{e’ (). @1 ()} = span{gp’ (). ().
Therefore, Xil)() can be expanded using r; basis functions wg”(-), . ,W}(-), ie.,
X (w) Z Py, weld, (22)

where the basis coefficients Ctjl- = § 1,bjl (u)T{XED (u) — pW(u)} du. Note that we take the

sum in defining K (u,v) in (20) to accumulate the information from different lags, and

12



there is no information cancellation as each term in the sum is non-negative definite. An
additional advantage for using the lagged autocovariance-based decomposition is that the
identified directions 9" (), . .. ,d)fqll)(-) catch the most significant serial dependence, which is
advantageous for future prediction.

Noting that Z,El) (+) is not directly observable, we can only estimate M,(Cl) and K® based on
pri-vector of estimated transformed curve subseries Zﬁl)() = { Zf{’(), e Z(Q (1)}T obtained in

Step 1. With the aid of (14), for k € {0} U [ko], put

A _ A A~

M (u,0) = AT S, 1 (u, v) A, . (23)

It is easy to see from (1) that 1\//\1,(;)(14, v) is a reasonable estimator for M,(f) (u,v) when k > 1,
as it filters out white noise egl)(-) automatically. However this is no longer the case when
k = 0. This is the major reason why we employ the variational multivariate FPCA to
estimate the finite-dimensional structure based on (21) and (22) instead of the multivariate
FPCA based on (18). It is noteworthy that (23) requires the consistent estimators for
3, k(u,v). Its implementation under the high-dimensional setting can thus be done by
setting fly’k(u, v) = %k(izk)(u,v) defined in (16).

To estimate wgl)(‘) and (t(;.) in (22), we perform the eigenanalysis for the estimated oper-

ator

A~

ko
K (u,v) = ZJ M,(f) (u,w)M,(f) (v, w)" dw (24)
— Ju

leading to the eigenvalues éf) = éél) > ... = 0, and the corresponding orthonormal eigen-
~ (1 ~
functions wi)(-),wé)(-), .... To estimate r; (i.e. the number of nonzero eigenvalues), we

take the commonly-adopted ratio-based estimator for r; as:

7, = arg max ———— 25
1 gje[n—k:o] g](lll + 0, (25)

for some 9,, > 0. Under some regularity conditions, such defined 7; is a consistent estimator

for r;; see Theorem 3 in Section 4. In practice, since 8, is usually unknown, we instead adopt

13



Ty = argmaXjefe, (n—ko)] l)/HJH, where ¢, € (0,1) is a prescribed constant aiming to avoid

fluctuations due to the ratios of extreme small values.

Let ét(]’) = {, @;l)(u)T{igl)(u) — ZW(uw)}du for t € [n], j € [#] and I € [¢]. We fit a
model for the 7-dimensional vector time series Eil) = {éﬁ), . ’@(2}7 with ¢ € [n] to obtain
its h-step ahead prediction as C ,(th and then recover the h-step ahead functional prediction

as
7
o _ 0 ~ ()
28 (w) = ZO0@) + Y. ¢y (w), h=1.
j=1

We finally obtain the h-step ahead prediction for original functional time series via SA(',H n(v) =

AZy,i1(-), where A = (Ay,...,Ay) and Zyon(-) = (200, ()7, ..., 29, ()T}

4 Theoretical properties

In this section, we present theoretical analysis of our two-step estimation procedure. To
ease presentation, we focus on the high-dimensional scenario and develop the associated
theoretical results based on the functional threshold estimator %k(ﬁzk)(u, v) in (16). To
simplify notation, we use B to denote the linear operator induced from the kernel func-
tion B € S, i.e. for any F € Ly(U), B = §,B(-,v)F(v)dv € Ly(Uf). We denote the
p-fold Cartesian product H = L2(U) x - -+ x LQ(L{). For any F,G € H, we denote the inner
product by (F,G) = §, F(u)"G(u)du with the induced norm | - || = (-, Y2 and use B
to denote the linear operator induced from the kernel matrix function B = (Bjj)m,xms,
with each B;; € S, ie. for any F € H, B(F)(-) = §,B(-,v)F(v)dv € H. We write
|Bs,c0 = Maxiepm,] Z;”jl |B;;|ls- Before imposing the regularity conditions, we first define
the functional version of sub-Gaussianity that facilities the development of non-asymptotic

results for Hilbert space-valued random elements.

Definition 1. Let T,(-) be a mean zero random variable in L*(U) and o : L*(U) — L*(U)

be a covariance operator. We call Ty(+) a sub-Gaussian process if there exists a constant

14



¢ > 0 such that E[exp{(F, T; — E(T;))}] < exp{271cX(F, Zo(F))} for all F e L2(U).

Condition 1. (i) {Y:(:)} is a sequence of multivariate functional linear processes with sub-
Gaussian errors, i.e., Yi(-) = X>,2, Di(€—;), where D; = (Dy;;)pxp with each Dy;; € S
and €/(-) = {€a(-),...,ep(-)}" with independent components of mean-zero sub-Gaussian

processes satisfying Definition 1; (i) The coefficient functions satisfy >,", [Di]s.e = O(1);
(ili) max;epy) §,, Cov{e,(u), e(u)} du = O(1).

Condition 2. For {Y(-)}, its spectral density operator f,, = (2m)~' Y, , 3y rexp(—ik6)

for 6 € [—m, m] exists and the functional stability measure

M, =21 esssup w < 0, (26)

Oe[—m, 7|, PeHy <¢ 2y 0<(I,>>
where Hy = {® € H : (®, 3, 4(®)) € (0,0)}.

Condition 1(i) can be viewed as the functional (or multivariate) generalization of the mul-
tivariate (or functional) linear process. Conditions 1(ii) and 1(iii) guarantee the covariance-
stationarity of {Y,(-)} and imply that maxe, fu Y04 (u,u)du = O(1) (Fang et al., 2022).
Both conditions are essential to derive the convergence rate for 22k specified in (15),

max; jerp | 2 Yy kijls = Op{M,(n"Hogp)¥/?}, which plays a crucial rule in our theo-

ykij
retical analysis. In general, we can relax Conditions 1(ii) and 1(iii) by allowing Y2 |Dils .00
and max;e(p) §,, Coviey;(u), €;(u)} du to diverge slowly with p, and our established rates below
will depend on these two terms. Condition 2 places a finite upper bound on the functional
stability measure, which characterizes the effect of small decaying eigenvalues of ¥, 5 on the

numerator of (26), thus being able to handle infinite-dimensional functional objects Y;;(-).

See its detailed discussion in Guo and Qiao (2023).

Condition 3. For A = (Ajj)pxp, maXepp) 257y [Ai]* < s1 and maxjepy) D57, [Aij]|* < sg for

some constant « € [0, 1).

The parameters s; and sy determine the row and column sparsity levels of A, respectively.

We may allow s; and sy to grow at some slow rates as p increases. The row sparsity with
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small s; entails that each component of Y,(-) is a linear combination of a small number of
components in Z(-), while the column sparsity with small s, corresponds to the case that
each Z;;(-) has impact on only a few components of Y,(-). The parameter a also controls

the sparsity level of A with a smaller value yielding a sparser A. Write

Py = maxpj. (27)
lefq]

Lemma A2 in the supplementary material reveals that the functional sparsity structures
in columns/rows of 3, x(-, ) are determined by s;sop;y with smaller values of s, so and p;
yielding functional sparser 3, x(-, -).

Recall that W, = diag(W,1,..., W, ,) in (7) is a block-diagonal matrix, where W is

a p; X p; matrix. We further define

p = min min A — /~\| ) (28)
J#l )\EA(WZYZ),)\EA(WZJ)

where A(B) denotes the set of eigenvalues of the matrix B, and assume p > 0.

We first establish the group recovery consistency of Step 1, i.e. the segmentation step. To
do this, we reformulate the permutation in Section 2.1 in an equivalent graph representation
way. For I', specified in (9), it holds that 'y, = AT',. As shown in Proposition 1(i), T,
can be taken as a block-diagonal orthogonal matrix with the main block sizes py, ..., pq.
Write T', = diag(T.,,...,T.,). Since A = (Ay,...,A,), we have 'y = (n,,...,m,) =
(AT, 1,..., AT, ). The columns of I, are naturally partitioned in to g groups G4, ..., Gy,

where G| = {7725;10 pptlr ’nZLOPV} with po = 0. To simplify the notation, we just write

-1 l
Glz{zpyu,...,xm}, e lal. (29)
I'=0 I'=0

Recall that the columns of such defined I'y, are the eigenvectors of W,. For p defined
n (28), if H\/A\/'y - W,|2 < p/5, by Lemma A4 in the supplementary material, there exists
an orthogonal matrix H = diag(Hy, ..., H,) with H; € R»*" for each [ € [¢] and a column
permutation matrix R for f‘y, such that f‘yR = (ﬁl, . ,ﬁq) with ﬁl € RP*Pt and

ITL, — AT Hy[s < 87! [W, — W, 5. (30)
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If the p eigenvalues of W, are distinct, H is a diagonal matrix with elements in the diagonal
being 1 or —1. Write I', H = (A I, Hy, ..., A . JHy) = (74, ..,7,). Foreach I e [q], we

can define a graph (G, Ey) such that (7, j) € £ if and only if max<m v Zyxv;ls # 0.

Condition 4. There exists some ¢ > 0 such that inf(; jjep, maxje<m |7 Zyrv;ls = < for

each [ € [¢], where m is specified in (12).

Condition 4 ensures that the group G is inseparable at the minimal signal level ¢ given
the transformation A;T'.;H; for each [ € [g]. Define Tj; = maxjy<m |7 Zyrv;ls and o =
> |Ei]. Rearrange X = p(p — 1)/2 values of Tj; (1 <4 < j < p) in the descending order,
Tay = --- = Tiwy. We then have T(;) > < for ¢ € [p] and T(;) = 0 for i > p + 1. Denote by
E={(i,j) : Tij = T(p),1 <i < j < p} the edge set of G = [p] under the transformation
I' H. The true segmentation {G1,...,G,} in (29) can then be identified by splitting (G, E)
into ¢ isolated subgraphs (G1, E1),. .., (Gy, Ey).

Recall that with the aid of f‘y, the estimated segmentation is obtained via the ratio-
based estimator ¢ as defined in (13). To be specific, we build an estimated graph (G, E’)
with vertex set G = [p] and edge set E = {(i,) : f}j > f(@),l < i < j < p}, and split it
into ¢ isolated subgraphs (él, EI), c (éq, Eq). Note that p columns of f‘y = (My,.--,1,)
correspond to the ordered eigenvalues )\1(\/7\\/'?;) > > )\p(\/ﬂ\/'y). Write f‘yR = (1 7)

and let 7 : [p] — [p] denote the permutation associated with R, i.e. 4; = 7,(;. Based on

the permutation mapping 7, we let G, = {7~'(i) : i € G,} for I € [§].

Theorem 1. Let Conditions 1-4 hold. For each |k| < ko v m, select wy, = c;M,(n"tlogp)/?
in (16) for some sufficiently large constant ¢y > 0. Assume (p_ls%sgp“;’*a)w(l_a)/\/lilogp =
o(n) and &, in (13) satisfies p~'s3s5p? > ML= (n" log p) =% « 6, « Ty, where py and
p are specified in (27) and (28), respectively. As n — oo, it holds that (i) P(¢ = q) — 1 and

(ii) there exists a permutation 7 : [q] — [q] such that P[ ?:1{éﬁ(l) =G}|¢g=q] - L

Theorem 1 gives the group recovery consistency of our Step 1. We next evaluate the errors

in estimating C(A;) for [ € [¢]. Based on the estimated groups {@1, e @q}, we reorganize
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the order of (4y,...,%,) = (Maqys - - - > Ma(p)) and define Ay in (14) as A, = (¥i)seq, for L e [q].
We consider a general discrepancy measure (Chang et al., 2015) between two linear spaces
C(B;) and C(B;) spanned by the columns of B; € RP*P and B, € RP*P2| respectively, with

B/B,; =1, for i € [2] as

tr(B,B]ByB})
maX(ﬁ17ﬁ2>

D{C(B,),C(B,)} = \/1 - e [0,1]. (31)

Then D{C(B;),C(B3)} is equal to 0 if and only if C(By) < C(Bs) or C(B3) < C(B;), and to

1 if and only if the two spaces are orthogonal.

Theorem 2. Let conditions for Theorem 1 hold. As n — oo, it holds that

max min D{C(A,),C (AJ)} = Op{p‘lsfsgp]%—“_/\/l;—a(n—llogp)(l—a)/2} .

lelq] jeld]

Theorem 2 presents the uniform convergence rate for minjeg D{C(A;),C (AJ)} over [ €
[¢], which is determined by both dimensionality parameters (n,p,p:,si,s2) and internal
parameters (M, «). The rate is faster for smaller values of {s1, s2, pt, M,, a}, while enlarging
the minimum eigen-gap between different blocks (i.e., larger p) reduces the difficulty of
estimating each C(A;).

Supported by Theorems 1 and 2, our subsequent theoretical results are developed by
assuming that the group structure of Z(-) is correctly identified or known, i.e., ¢ = ¢ and
G, = G, for each . We now turn to investigate the theoretical properties of Step 2, i.e. the
dimension reduction step. Inherited from the segmentation step, Zgl)(-), ce qu)(-) rely on
the specific form of A = (Ay,...,A,), and thus is not uniquely defined. Yet intuitively,
we only require a certain transformation matrix to make our subsequent analysis related to
Ny, - - ,ﬁp mathematically tractable. Based on (30), we define IT; = A", ;H; and it holds
that C(IT,) = C(A;) for each [ € [¢q]. Let Z{"(\) = IT/Y(-). Recall (1) and (22). The
primary goal of Step 2 is to identify each r; and to estimate the associated dynamic space

¢, = span{ypl’ (), . .. (Z)( )}. Recall that {9(“ ( )}j=1 are the eigenvalue/eigenfunction
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pairs of KO(-,-) defined in (24) with A, = (¥:)icc, and the dimension r; is a fixed finite

integer for all [ € [g]. Our asymptotic results are based on the following regularity condition:

Condition 5. For each [ € [¢], all 7; nonzero eigenvalues of K" (- -) are different, i.e.,

05” > > 05? >0 = 0£?+1 = ...

Theorem 3. Let Conditions 1-3 and 5 hold. Assume (p~'s3s3p?>*)¥ 1= M2 log p = o(n)
and 8, in (25) satisfies ptstspl 2 ML (n  og p) 12 « On < minle[q]{ég)P/ MaX;e[q] o,
where p;y and p are specified in (27) and (28), respectively. As n — oo, it holds that

PO {7 =m}] — L.

Theorem 3 shows that r; can be correctly identified with probability tending to one
. - ~ (1) ~ (1) .
uniformly over [ € [q]. Let C; = span{t, (-),...,%; (-)} be the dynamic space spanned by
7, estimated eigenfunctions. To measure the discrepancy between C; and 51, we introduce
the following metric. For two subspaces C(b;) = span{bji(-),...,b17 ()} and C(bs) =
span{ba; (), ..., bas,(-)} satisfying (b;;, by = I(j = k) for each ¢ € [2], the discrepancy

measure between C(b;) and C(by) is defined as

1 T2

2. Dby b € [0.1]

j=1k=1

which equals 0 if and only if C(b;) = C(by) or C(bs) = C(by) and 1 if and only if two spaces

~ 1
D{C(by),C(by)} =, |1 — ————

{ ( 1)7 ( 2)} max(fl,fg)
are orthogonal.

Theorem 4. Let conditions for Theorem 3 hold. Assume (A‘1p_15?3%p?2a)2/(1_0‘)/\/l§ logp =

o(n) with A = minle[q]de[rl]{Gj(-l) - HJ(-ZJ)FI}. Asn — oo, it holds that

Ilrel[ﬁ}ﬁi D(C,C) = Op{A‘lp_lsi’sgpfm/\/l;_"‘(n_llogp)(l_am} :

5 Simulation studies

We conduct a series of simulations to illustrate the finite sample performance of the proposed

methods for cases with fixed p and large p in Sections 5.1 and 5.2, respectively.
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To simplify the data generating process, we consider a relaxed form of (2), written as

~ ~

Yi(u) = AZ,(u) = AZP ()7, 29wV, weld =[0,1], (32)

with no orthogonality restriction on the transformation matrix A = (Al, e ,Aq). The
p-dimensional transformed functional time series Zt() is formed by ¢ uncorrelated groups
{fo’() : 1 € [q]}, where each group Zﬁ”() is decomposed as the sum of a dynamic element
X" () and a white noise element & (-), i.e. Z"(-) = XV () +&(:). Based on (4) in Section

2, model (32) can then be easily reformulated as (2) by setting
Yi() =V, V) A=V PAV and Z() = VL), (33)

where V; = { Cov{Y,(u), Y,(u)} du and V; = Sy Cov{Z:(u), Z(u)} du. Then the orthogo-
nality of A is satisfied.

Write &,(+) = {égl)()T, . ,él(tQ)(-)T}T = {u(),...,Ep(-)} . We generate each curve com-
ponent of &(-) independently by &;;(u) = }21 2=(De by (u) for j € [p], where ey ’s are
sampled independently from N (0, 1) and {t(-)};2, is a 10-dimensional Fourier basis function.
The finite-dimensional dynamics X,(-) = {}V(ﬁ”(.)ﬂ . ,XEQ)(-)T}T with prescribed group
structure is generated based on some 5-dimensional curve dynamics 9y, (u) = 30| kgt (u)
for g € [20]. The basis coefficients ki, = (Kig1, ..., Kig5) are generated from a stationary
VAR model ki = Ugk 1), +e€; for each g. To guarantee the stationarity of Ky, we generate
U, = (U, /p(U,) with . ~ Uniform[0.5, 1] and p(U,) being the spectral radius of U, € R5*5,
the entries of which are sampled independently from Uniform[—3,3]. The components of the
innovation e; are sampled independently from N(0,1). We will specify the exact forms of
)v(t() under the fixed and large p scenarios in Sections 5.1 and 5.2, respectively. The white
noise sequence &(-) ensures that Z(-) as well as Z;(-) share the same group structure as
)V(t() Unless otherwise stated, we set kg = m = 5 and ¢, = ¢, = 0.75 in our procedure, as

our simulation results suggest that our procedure is robust to the choices of these parameters.
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5.1 Cases with fixed p

We consider the following three examples of X, (+) = {Xu (), .. ., Xip()}" with different group

structures for p € {6, 10, 15} based on independent ¥y (+), ..., Us5(+).

EXAMPLE 1. th(') = 19151('), th<'> = ﬁ(t+j—2)2(') for _] S {2,3} and th<') = 79(t+j—4)3(')

for j € {4,5,6}.

EXAMPLE 2. X,;(-) for j € [6] are the same as those in Example 1 and X (-) =

ﬁ(t+j—7)4(') for j € {7, ey 10}

EXAMPLE 3. X,;(-) for j € [10] are the same as those in Example 2 and X;(:) =

7.9(t+j,11)5(‘) for j € {11, ey 15}

Therefore, )v(t() consists of ¢ = 3,4 and 5 uncorrelated groups of curve subseries in Exam-
ples 1, 2 and 3, respectively, where the number of component curves per group is p; = {
for I € [q]. The p-dimensional observed functional time series Y;(-) = {Y;1(-),... Y ()}
for t € [n] is then generated by (32) with the entries of A sampled independently from
Uniform[—3,3]. To obtain h-step ahead prediction of Y,(-), we integrate the segmentation
and dimension reduction steps respectively in Sections 2 and 3 into the VAR estimation as

outlined in Algorithm 1. For each of the three examples introduced above, we select

V- i hnif {s?t(u) - i hg?t(u)}@ du, (34)

S o) = 3 (V) - Yl Venle) - Vo)), (39)

with Y, () = (n—h—k)" 1 30" Y, (), for the quantities involved in Step (i) of Algorithm 1.
We refer to the segmentation-and-VAR-based Algorithm 1 with selections of \Aféh) in (34)

and f?;h,i(u,v) in (35) as SegV hereafter.
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Algorithm 1 General prediction procedure for multivariate functional time series
(i) Treat the first n — h observations as training data, adopt the normalization step to

obtain Y, () = {\A/;h)}_l/z?t(-), where \Aféh) is the consistent estimator of V; in (33),
and implement the segmentation procedure on {Y,(-)}7=/* as in Section 2.1 to estimate

A~

the transformation matrix A = (A, ... ,_&;) and the transformed curve subseries
{Z)() 1<l

(ii) Apply the procedure in Section 3 on each {iﬁ“(-)}?j to achieve the h-step ahead
prediction denoted as zﬁf)(), for 1 € [¢]. In particular, for each [, select the best VAR

~(l
model that best fits each lower-dimensional vector process {Ci )}’;:_{L according to the

AIC criterion.

(iii) Obtain the h-step ahead prediction AZn() for the normalized curves Y,(-) with

Zo(-) = {ZP()7, .. .,25?)(')T}T. Then the h-step ahead prediction for the original

~

curves Y, () is given by Y, (-) = {Var (), .., Yup()} T = {(VI}2AZ, ().

The performance of our two-step proposal is examined in terms of linear space estimation,
group identification and post-sample prediction. For A = (A, ..., A,) specified in (33), with
the aid of (31), define f(I) = argmin;eps D*{C(A,),C(A;)} for each I € [q]. We then call
A= (;&1,...,.&4) an effective segmentation of A if (i) 1 < ¢ < ¢, and (ii) rank(@l/) =
2iefq): fuy—r Tank(Ay) for each I € [g]. The intuition is as follows. The effective segmentation
implies that each identified group in Zt() contains at least one, but not all, groups in
Z.(-). Since our main target is to forecast Y;(-) based on the cross-serial dependence in
{Zy)(') : 1 € [¢]}, this segmentation result is effective in the sense that the linear dynamics
in Z(-) is well kept in {ZEZ)() : [ € [¢]} without any contamination or damage and a mild
dimension reduction is achieved with ¢ > 1. For the special case of complete segmentation

(G = q), we use the maximum and averaged estimation errors for (Al, . ,Aq), respectively,

defined as MaxE = maxcig D*{C(A,),C(A )} and AvgE = ¢~ 3, D2{C(A)),C(A0)}
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to assess the ability of our method in fully recovering the spanned spaces C(A;),...,C(A,).
Note that A in (33) can not be easily computed, as the true V; and V; are hard to find
even for simulated examples. For A specified in (32), let A= \ VZA = (Al, o ,Aq) with
Al = Vg_m_&l. Since V3 is a block-diagonal matrix, then C(Al) = C(A,) for | € [¢q]. Hence,
we can replace C(A;) by C ({\Aféh)}’l/ 2A,) to obtain the approximations of MaxE and AvgE
in our simulations.

To evaluate the post-sample predictive accuracy, we define the mean squared prediction

error (MSPE) as

1 &S .
MSPE = — 7 {V(v) — Yo (05)}? (36)
pN j=li=1
with vy, ..., vx being equally spaced time points in [0, 1], and compute the relative prediction

error as the ratio of MSPE in (36) to that under the ‘oracle’ case. In the oracle case, we
apply the procedure in Section 3 directly on each true {ZEZ)(-)}?:_{‘ to achieve the h-step
ahead prediction for {Z(f)() : 1 € [q]}, denoted by {Z,(P() : 1 € [¢]}, and further obtain the h-
step ahead prediction A{ZS) ..., ZSJ)(-)T}T for the original curves Y;(+). By comparison,
we also implement an univariate functional prediction method on each Yt]() separately
by performing univariate dimension reduction (Bathia et al., 2010), then predicting vector
time series based on the best fitted VAR model and finally recovering functional prediction
(denoted as UniV).

We generate n € {200,400, 800, 1600} observations with N = 30 for each example and
replicate each simulation 500 times. Table 1 provides numerical summaries, including the
relative frequencies of the effective segmentation with § = g and ¢ > ¢—1, and the estimation
errors for A = (Al, cee Ag) under the complete segmentation case. As one would expect, the
proposed method provides higher proportions of effective segmentation and lower estimation
errors as n increases, and performs fairly well for reasonably large n as p increases. For
(p,n) = (6,200), we observe 62.6% complete segmentation with AvgE as low as 0.079.

Furthermore, the proportions of effective segmentation with ¢ > ¢ — 1 are above 93% for
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n = 200. Similar results can be found for cases of (p,n) = (10,800+) and (15, 1600), whose
proportions of effective segmentation with ¢ > ¢ — 1 remain higher than 87.4% and 83.2%,
respectively. Table 1 also reports the relative one-step ahead prediction errors. It is evident
that SegV significantly outperforms UniV in all settings, demonstrating the effectiveness
of our proposed segmentation transformation and dimension reduction in predicting future
values. Although the proportions of complete segmentation are not high especially when
p = 15, the corresponding proportions of ¢ = ¢ — 1 become substantially higher, and SegV

performs very similarly to the oracle case with its relative prediction errors being close to 1.

5.2 Cases with large p

Under a large p scenario, a natural question to ask is whether the segmentation method based
on the classical estimation for autocovariance functions of Y,(-) (denoted as NonT) as (35) in
Section 5.1 still performs well, and if not, whether a satisfactory improvement is attainable
via the functional-thresholding estimation (denoted as FunT) developed in Section 2.2. To
this end, we generate Y;(+) from model (32) with p € {30,60} and n € {200,400}. Specifically,
we let Xt(3l72)(') = Ju(-), Xt(3lf1)(') = ﬁ(t+1)l(')> Xt(3l)(') = 19(t+2)l(') for [ € [q]. This setting
ensures ¢ uncorrelated groups of curve subseries in )V(t() with p; = 3 component curves per
group and hence ¢ = 10 and 20 correspond to p = 30 and 60, respectively. Let the p x p
transformation matrix A = A+ A, Here A = diag{Aq,..., Al(p/6)} with elements of
each Ay; € R%*6 being sampled independently from Uniform[—3, 3] for i € [p/6], and A, is
a matrix with two randomly selected nonzero elements from Uniform[—1, 1] each row. We
set 0 € {0.1,0.5}. It is notable that our setting results in a very high-dimensional learning
task in the sense that the intrinsic dimension 30 x 5 = 150 or 60 x 5 = 300 is large relative
to the sample size n = 200 or 400.

We assess the performance of NonT and FunT in discovering the group structure. The

optimal thresholding parameters w; in FunT are selected by the five-fold cross-validation
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Table 1: The relative frequencies of effective segmentation with respect to ¢ = ¢ and

G = q— 1, and the means (standard deviations) of MaxE, AvgE, and relative MSPEs over

500 simulation runs.

n = 200 n = 400 n = 800 n = 1600

i=q 0.626 0.722 0.772 0.880

G=q-1 0.930 0.988 0.998 1.000
Example 1 ~ MaxE  0.128(0.088) 0.089(0.066) 0.053(0.048) 0.035(0.037)
(p = 6) AvgE  0.079(0.052) 0.053(0.038) 0.030(0.025) 0.019(0.019)
SegV  1.081(0.172) 1.048(0.105) 1.026(0.065) 1.014(0.048)
UniV  1.584(0.453) 1.598(0.423) 1.596(0.379) 1.651(0.443)

i=q 0.324 0.444 0.644 0.806

G=q-1 0.490 0.688 0.874 0.972
Example 2 MaxE  0.301(0.108) 0.193(0.090) 0.117(0.064) 0.072(0.049)
(p=10)  AvgE  0.183(0.059) 0.115(0.047) 0.069(0.035) 0.041(0.024)
SegV  1.291(0.271) 1.174(0.215) 1.089(0.143) 1.059(0.091)
UniV  1.708(0.404) 1.836(0.410) 1.841(0.436) 1.862(0.392)

Gd=q 0.032 0.178 0.410 0.622

G=q-1 0.086 0.344 0.616 0.832
Example 3 MaxE  0.426(0.091) 0.347(0.121) 0.241(0.113) 0.157(0.091)
(p=15)  AvgE  0.273(0.054) 0.195(0.050) 0.128(0.042) 0.077(0.033)
SegV  1.477(0.313) 1.363(0.277) 1.166(0.156) 1.091(0.098)
UniV  1.805(0.370) 1.967(0.394) 2.033(0.394) 2.001(0.384)

as discussed in Remark 2 in Section 2.2, and Vj in the normalization step is estimated
by \Afg)) given in (34), as the threshold version of \A/—;O) might not be positive definite. In
practice, when p is large, FunT may lead to segmentation with a small ¢, indicating that
: 1 € [¢]} contain multiple groups in {Zgl)(-) le

some groups of {251)() [¢]}. To ease the

modelling burden of complex VAR process, we may consider performing further segmentation
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transformation on the estimated groups by repeating FunT R times. To be precise, the i-th
round of segmentation transformation via FunT is performed within each group discovered
in the (i — 1)-th round with ¢, = 1 for i € [R], and hence (Aq,... ,Ag) is updated after each
iteration. Table 2 reports the relative frequencies of the effective segmentation for NonT
and FunT with R € {1,5,10}. Finally, we apply FunT-based SegV (denoted as FTSegV)
in conjunction with the R-round segmentation transformation for R € {1,5,10} in Step (i)
of Algorithm 1, and compare their one-step ahead predictive performance with UniV and
SegV. Table 3 summarizes the relative prediction errors for all five comparison methods.
Several conclusions can be drawn from Tables 2 and 3. First, the performance of SegV
severely deteriorates under the high-dimensional setting. Specifically, this procedure does
not detect any effective segmentation, thus resulting in elevated prediction errors. By com-
parison, FTSegV exhibits superior predictive ability over SegV and UniV. In particular, for
large n, e.g. n = 400, FTSegV does a reasonably good job in recovering the group structure
of Z,(-) and performs comparably well to the oracle method with the relative prediction
errors lower than 1.149 in all scenarios. Second, comparing the results for n = 200 among
different R, we observe an interesting phenomenon that even though the relative frequen-
cies of effective segmentation for FunT drop as R increases, implying that some groups in
{Zgl)() : L € [q]} are split incorrectly before forecasting, the prediction errors stay low and
slightly decrease as shown in Table 3. This is not surprising, since further segmentation
based on FunT yields fewer parameters to be estimated in VAR models and thus benefits
the forecasting accuracy even if a few small but significant cross-covariances of Z;(-) are
ignored. Such finding highlights the success of FTSegV and its R-round segmentation in
the sense that although FTSegV may not be able to accurately recover the group structure
in Z;(-) for a small n, it achieves an appropriate dimension reduction to provide significant

improvement in high-dimensional functional prediction.
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Table 2: The relative frequencies of effective segmentation over 500 simulation runs.

NonT FunT
(p,9) R=1 R=5 R=10
n =200 n =400
n=200 n=400 | n=200 n=400|n=200 n =400
(30, 0.1) 0 0 0.706 1.000 0.556 1.000 0.546 1.000
(30, 0.5) 0 0 0.588 1.000 0.436 1.000 0.420 1.000
(60, 0.1) 0 0 0.298 1.000 0.148 1.000 0.144 1.000
(60, 0.5) 0 0 0.194 0.996 0.078 0.990 0.072 0.990

Table 3: Means (standard deviations) of relative MSPEs over 500 simulation runs.

Method (p,9) n =200 n =400 (p,9) n =200 n =400
FTSegV (R = 1) 1.243(0.162)  1.095(0.105) 1.249(0.122)  1.110(0.073)
FTSegV (R =5) 1.225(0.153) 1.091(0.101) 1.250(0.123) 1.104(0.071)
FTSegV (R = 10) | (30, 0.1) | 1.222(0.151) 1.087(0.099) | (60, 0.1) | 1.249(0.122) 1.099(0.071)

SegV 1.814(0.376)  1.901(0.368) 1.813(0.271)  1.907(0.265)
UniV 1.631(0.313)  1.735(0.317) 1.599(0.214) 1.682(0.210)
FTSegV (R = 1) 1.268(0.176)  1.134(0.134) 1.285(0.134)  1.149(0.101)
FTSegV (R = 5) 1.255(0.171)  1.128(0.130) 1.282(0.136)  1.142(0.098)
FTSegV (R =10) | (30, 0.5) | 1.250(0.168) 1.128(0.127) | (60, 0.5) | 1.281(0.136) 1.141(0.099)
SegV 1.815(0.377)  1.903(0.369) 1.813(0.271) 1.905(0.264)
UniV 1.635(0.315) 1.740(0.317) 1.603(0.215) 1.684(0.209)

6 Real data analysis

In this section, we apply our proposed SegV and FTSegV to three real data examples arising
from different fields. Our main goal is to evaluate the post-sample predictive accuracy of both
methods. By comparison, we also implement componentwise univariate prediction method
(UniV) and the multivariate prediction method of Gao et al. (2019) (denoted as GSY) to

jointly predict p component series by fitting a factor model to estimated scores obtained
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via eigenanalysis of the long-run covariance function (Hormann et al., 2015). To evaluate
the effectiveness of the segmentation transformation and its impact on prediction, we forge
two other segmentation cases, namely under-segmentation and over-segmentation, for both
SegV and FTSegV (denoted as Under.SegV, Over.SegV, Under.FTSegV and Over.FTSegV,
respectively). Denote by {C:'l : 1 €[]} the segmented groups of {Z,E”() : 1 € [q]} discovered in
Step (i) of Algorithm 1 (seen also as correct-segmentation). The under-segmentation updates
{CA?Z : 1 € [¢]} by merging two groups éll and @lﬁ together before subsequent analysis, where
AXGIMAX ; by iy ey 1<IAV<d ﬁj € @ll X @yl with ﬁj defined in (12). The over-segmentation,
on the other hand, regards each curve component of {fo)() : 1 €[]} as an individual group
and then applies UniV componentwisely. For a fair comparison, the orders of VAR models
adopted in all SegV /FTSegV-related methods and UniV are determined by the AIC criterion
without any fine-tuning being applied, while GSY is implemented using the R package ftsa.

To examine the predictive performance, we apply an expanding window approach to the
observed data Yy;(v;) for t € [n],j € [p],i € [N]. We first split the dataset into a training set
and a test set respectively consisting of the first n; and the remaining ny observations. For
any positive integer h, we implement each comparison method on the training set {Yt] (v;) :
t € [n1],7 € [p],i € [IN]} and obtain its h-step ahead prediction, denoted as }Af(gﬁ) Ly (vi), based
on the fitted model. We then increase the training size by one, i.e. {Y;;(v;):te [n +1],j€
[p],i € [IN]}, refit the model and compute the next h-step ahead prediction }Af(glhl) 1eh); (v;) for
j € [p],i € [N]. Repeat the above procedure until the last h-step ahead prediction An(]}-l)(vi)
is produced. Finally, we compute the h-step ahead mean absolute prediction error (MAPE)

and mean squared prediction error (MSPE), respectively, defined as

MAPE(D) = o 30 M MR = Yifoo).
7

MSPE(R) = ————— 31 SISV (w) - Vig(e}?.

(no+1—nh)p
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6.1 UK annual temperature data

The first dataset, which is available at https://www.metoffice.gov.uk/research/climate/
maps-and-data/historic-station-data, consists of monthly mean temperature collected
at p = 22 measuring stations across Britain from 1959 to 2020 (n = 62). Let Y;;(v;) (¢ € [62],
j €]22], i € [12]) be the mean temperature during month v; = i of year 1958 + ¢ measured
at the j-th station. The observed temperature curves are smoothed using a 10-dimensional
Fourier basis that characterize the periodic pattern over the annual cycle. We divide the
smoothed dataset into the training set of size n; = 41 and the test set of size n, = 21. Since
the smoothed curve series exhibit very weak autocorrelations when lags are beyond 3 and
the training size is relatively small, we use kg = m = 3 in our procedure for this example.
The values of MAPE and MSPE for h € {1, 2,3} defined in (37) are summarized in Table 4.
Several obvious patterns are observable. First, our proposed SegV and FTSegV perform sim-
ilarly well and both provide the highest predictive accuracies among all comparison methods
for all A. This demonstrates the effectiveness of reducing the number of parameters via the
segmentation in predicting high-dimensional functional time series, while the latent trans-
formation matrix may not be approximately sparse in practice. Second, although the cases
of under- and over-segmentation are slightly inferior to the correct-segmentation case, they
significantly outperform UniV and GSY in one- and two-step-ahead predictions. It is worth
noting that the over segmentation ignores all the correlations among different components of
transformed curves, whereas UniV neglects those of original curves. This observation reveals

that the transformation can also improve the prediction efficiently.

6.2 Japanese mortality data

The second dataset, which can be downloaded from https://www.ipss.go.jp/p-toukei/
JMD/index-en.html, contains age-specific and gender-specific mortality rates for p = 47

prefectures in Japan during 1975 to 2017 (n = 43). Following the recent proposal of Gao et al.
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Table 4: MAFEs and MSFEs for eight competing methods on the UK temperature curves

for h € {1,2,3}.

MAFE MSFE
Method
h=1 h=2 h=3|h=1 h=2 h=3
SegV 0.786 0.806 0.827 | 1.073 1.075 1.155

Under.SegV 0.805 0.826 0.883 | 1.152 1.135 1.266
Over.SegV 0.797 0.821 0.845 | 1.101 1.126 1.174
FTSegV 0.789 0.806 0.828 | 1.077 1.073 1.158
Under.FTSegV | 0.791 0.820 0.872 | 1.105 1.112 1.250
Over.FTSegV | 0.797 0.821 0.845 | 1.101 1.126 1.174
UniV 0.936 0.951 0976 | 1.450 1.450 1.458

GSY 0.894 0.884 0.854 | 1.346 1.338 1.219

(2019), we model the log transformation of the mortality rate of people aged v; = i—1 living in
the j-th prefecture during year 1974+t as a random curve Yy;(v;) (¢ € [43], j € [47], i € [96])
and perform smoothing for observed mortality curves via smoothing splines. The post-
sample prediction are carried out in an identical way to Section 6.1. We choose kg = m =3
in our estimation procedure and treat the smoothed curves in the first n; = 33 years and
the last ny = 10 years as the training sample and the test sample, respectively.

Table 5 reports the MAPEs and MSPEs for Japanese females and males. Again it is
obvious that SegV and FTSegV provide the best predictive performance uniformly for both
females and males, and all h. One may also notice that, compared with SegV and Under.SegV,
Over.SegV does not perform well for males. In most cases, the transformed curve series for
males admits ¢ = 44 groups with 43 groups of size 1 and one large group of size 4. However,
Over.SegV fails to account for the cross serial dependence within the large group of 4, thus
leading to less accurate predictions. On the other hand, the transformed curves for females

reveal a common structure with one group of size 2 and the remaining groups of size 1. As
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expected, Over.SegV performs slightly better in this case. This finding again confirms the
effectiveness of our procedure, in particular, the within group cross dependence information

is also valuable in the post-sample prediction.

Table 5: MAFEs and MSFEs for eight competing methods on the Japanese female and male

mortality curves for h € {1,2,3}. All numbers are multiplied by 10.

MAFE MSFE MAFE MSFE

Method
h=1 h=2 h=3|h=1 h=2 h=3 h=1 h=2 h=3|h=1 h=2 h=3
SegV 1.393 1.414 1.468 | 0.482 0.470 0.486 1.374 1461 1.543 | 0.436 0.453 0.481
Under.SegV 1.537 1.661 1.853 | 0.528 0.560  0.642 1.394 1.491 1.608 | 0.443 0.464 0.503
Over.SegV 1.427 1.610 1.814 | 0482 0.520 0.588 1.506 1.678 1.897 | 0.468 0.514 0.603
FTSegV 1.392 1.417 1.468 | 0.484 0471 0.484 1.376  1.444 1.521 | 0.435 0.446 0.473

Female Male

Under.FTSegV 1.542 1.661 1.846 | 0.533 0.560 0.638 1.380 1482 1.596 | 0.440 0.460 0.499
Over.FTSegV 1.433 1.617 1.816 | 0484 0.523 0.588 1.512  1.673 1.894 | 0.470 0.512 0.604
UniV 1.602 1.858 2.136 | 0.523 0.618 0.737 1.568 1.855 2.167 | 0.485 0.595 0.743
GSY 1.618 1.691 1.682 | 0.678 0.733 0.706 1.550 1.581 1.576 | 0.669 0.663 0.628

6.3 Energy consumption data

Our third dataset contains energy consumption readings (in kWh) taken at half hourly in-
tervals for thousands of London households, and is available at https://data.london.gov.
uk/dataset/smartmeter-energy-use-data-in-london-households. In our study, we se-
lect households with flat energy prices during the period between December 2012 and May
2013 (n = 182) after removing samples with too many missing records, and hence construct
4000 samples of daily energy consumption curves observed at N = 48 equally spaced time
points. To alleviate the impact of randomness from individual curves, we randomly split the
data into p groups of equal size, then take the sample average of curves within each group
and finally smooth the averaged curves based on a 15-dimensional Fourier basis. We target

to evaluate the h-day ahead predictive accuracy for the p-dimensional intraday energy con-
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sumption averaged curves in May 2013 based on the training data from December 2012 to
the previous day. The eight comparison methods are built in the same manner as Section 6.1
with kg = m = 5.

Table 6 presents the mean prediction errors for h € {1,2,3} and p € {40,80}. A few
trends are apparent. First, the prediction errors for p = 80 are higher than those for
p = 40 as higher dimensionality poses more challenges in prediction. Second, likewise in
previous examples, SegV and FTSegV attain the lowest prediction errors in comparison to
five competing methods under all scenarios. All segmentation-based methods consistently
outperform UniV and GSY by a large margin. Third, despite being developed for high-

dimensional functional time series prediction, GSY provides the worst result in this example.

Table 6: MAFEs and MSFEs for eight competing methods on the energy consumption curves

for h e {1,2,3} and p € {40,80}. All numbers are multiplied by 102.

MAFE MSFE MAFE MSFE

Method
h=1 h= h = h=1 h= h=3 h=1 h= h = h=1 h= h=3
SegV 1.639 1.748 1.793 | 0.047 0.053 0.054 1.996 2.058 2.071 | 0.070 0.075 0.075
Under.SegV 1.669 1.766 1.794 | 0.048 0.054 0.054 2.025 2.092 2.104 | 0.072 0.077 0.077
Over.SegV 1.709 1.873 1.964 | 0.049 0.058 0.062 2.022 2132 2187 | 0.070 0.078 0.081
FTSegV 1.637 1.747 1.791 | 0.047 0.053 0.054 2.012 2.055 2.070 | 0.071 0.074 0.074
Under.FTSegV P 1.669 1.766 1.793 | 0.048 0.054 0.054 P 2.040 2.087 2.104 | 0.073 0.076  0.077
Over.FTSegV 1.708 1.872 1.963 | 0.049 0.058 0.062 2.045 2138 2.190 | 0.072 0.078 0.081
UniV 1.867 2.009 2.109 | 0.058 0.067 0.072 2.221 2362 2463 | 0.083 0.093 0.100
GSY 2.142  2.264 2.320 | 0.099 0.110 0.119 2.833 2.826 2.781 | 0.159 0.159 0.159
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Supplementary material to “On the modelling and prediction of

high-dimensional functional time series”

Jinyuan Chang, Qin Fang, Xinghao Qiao and Qiwei Yao

This supplementary material contains all technical proofs supporting Section 4. We
begin by introducing some notation. For x,y € R, we use x v y = max(x,y). For a vec-
tor b € RP, we denote its {5 norm by [bly = (37_, b;|9)Y2. For any F = (F1,...,F,)"
and G = (G, .., Sp)T € H, we define the inner product as (F,G) = §, F( u)du =

yERR u) du with the induced norm | - || = ¢-,->’*, and denote by FQ G = (F; ®
S j)i,je[p]. We further denote by £ = L(H, H) the space of continuous linear operators from H
to H. For B = (By;),xp with each B;; € S, we write [ Blsr = (30, 20— [Bis[3)"?, |Blsa =
ey 7y [Bijls, [Bllse = maxiep) X2, |Byls and [Ble = supjsc sesl BEF)|. We
define the image space of B as Im(B) = {Ge H: G = B(F),F € H}. For two positive
sequences {a,} and {b,}, we write a,, < b, or b, 2 a, if there exist a positive constant ¢ such
that a,/b, < ¢ and write a,, = b, if and only if a,, < b, and b, < a, hold simultaneously.
We further write a,, < b, or b, » a, if limsup,,_,, a,/b, = 0. Throughout, we use ¢, ¢y to

denote generic positive finite constants that may be different in different uses.

A Auxiliary lemmas

To prove Theorems 1-4, we need the following inequalities, equality and auxiliary lemmas,

the proofs of which are deferred to Section G.

Inequality 1. Let 31 = (Bl,ij)pxp and 32 = (BQ,ij)po with Bl7ij7B2 ij €S fO’f’ any Z,j €
[pl. It holds that (i) | §§B1(u,v)Ba(u,v)" dudvly < |Bi| LBl 7 |Bals I Bal 3, (i)
I§B1(-,w)Bo(-,w)" dw|sy < | Billsp|Balsy, and (iii) [B1 + Bafsr < |Bilsr + |Bzlsr-



Inequality 2. Let B = (B;j)pxp with each B;j €S, by € R? and by € RP. Then |b]{ Bby|s <

1/2 1/2
[by 2B 2| B[ Y2 | Bl

Inequality 3. Let B = (By;)pxp with each By € S and F € H. Then | § B(-,v)F(v) dv| <
|Blls.el|F| and Bz < [Bls.k-

Equality 1. For any F and G € H, it holds that |[F® G |sr = |F||S]-

Lemma A1l. Let {Y(:)} satisfy Conditions 1 and 2. There exists some universal constant
¢ > 0 such that P{Higs;,k,ij_zy,k,inS > M,n} < 8exp{—cnmin(n? n)} for any n > 0,

k| < kg vm and i, j € [p].

Lemma A2. Suppose Condition 3 holds. Then maxXjk<iovm Doy [Syrii|s = O(E) =
= 1—a

MaX|ki<kovm 2y—1 [ Sy kii|§ and maxiycryvm [Syrllsy = OEpy™) = maxiyichovm [Zy il 5.0,

where Z = 5152(2py + 1) with py = maxjepg pr-

Lemma A3. Let Conditions 1-3 hold. For each |k| < ko v m, select wy, = c;M,(n"tlog p)/?
for some sufficiently large constant ¢, > 0. If logp = o(n), then maxj<iovm H7;k(f]§k) —
Sykls1 = Op{E./\/lzl/_a(n_]L log p) =2} = max|k|<k0vm||7;k(i;k) — X, k5.0, where = =
s152(2py + 1) with p; = maxerg pi. Moreover, if pT_Q./\/lzlogp = o(n) is also satisfied, then
| SS{Z}k(i‘Z,k)(u,v)@Q — 3, k(u,v)®?*} dudv||y = Op{EQp%_aM;_a(n_l log p)1=*/2} for each

|]€‘ <k0 v m.

Lemma A4 (Theorem 8.1.10 of Golub and Van Loan (1996)). Suppose B and B + E are
m x m symmetric matrices and Q = (Qq, Qy), with Q; € R™! and Qy € R™ ™=V s an
orthogonal matriz such that C(Qq) is an invariant subspace for B, that is, B-C(Q1) < C(Qy).

Partition the matrices Q"' BQ and Q"EQ as follows:

D, 0 En Ej
Q'BQ = and Q'EQ =
0 D, Ey Eg
Ifsep(Dy,D3) = min,, ea(p, ) ueA(Dy) |11 — 2] > 0, where A(M) denotes the set of eigenvalues

of the matriz M, and |E|, < sep(D1,D,)/5, then there exists a matriv P e RM=UX! qith
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IP|ly < 4|Ea||2/sep(Dy, Dy) such that the columns of Q} = (Q1 + QoP)(I+PTP)~Y2 define

an orthonormal basis for a subspace that is invariant for B + E.

From Lemma A4, we have

1Q7 — Qillz = [{Q1+ QP — Qi(I+ PTP)l/Q}(I + PTP)—1/2H2

< QI - T+ PTP)2}5 + |QaP|

8 8
<Pl € ———|Esfs < ————|E|>.
P Sep(D17D2>H il Sep(Dl,D2)H I
Lemma A5. Let {0;,¢;(-)}j=1 and {éj,aj()}jzl be the eigenvalue/eigenfunction pairs of
Q(-,-) and Q(, -) respectively, with the corresponding nonzero eigenvalues sorted in decreas-

ing order. Then we have (i) sup;-, |0; — 6;] < |Q — Qs and (i) SUP;> Aj||$j — @] <
2v2|Q ~ Q|ls, where A; = mingeg) (0 — 0.

B Proof of Proposition 2

Let Qg) = (Ql(fl,)ij)TlXTl‘ By the decomposition (18), we write

T
l l l l
MY =330l o @ (). (8.1)
i=1j=1

Hence, Im(M}") = span{e{(-), ..., ¢l ()}. Define A = | 37, Q| and ¢{() =

Z;l Qk l]soj ( )/H Z kz]LP] H we then rewrite (S 1)
T
V=Y e @ (el (5-:2)
i=1

We next show that the set {gb,gl,)l(-), ce g{),&l’)n ()} is linearly independent for some k € [ko]. Let
B = (B1,...,B,)" denote an arbitrary vector in R™ and ¢W(.) = {¢§’)(~) Lp,(ﬂl,)( )T}
Since the set {@"(-),..., " (-)} is linearly independent and Q is of full rank for some

k € [ko], the only solution of

Zﬁz () =B e() =0

Zﬂkw ¥




is B = 0 for such k. Hence, the set {¢,(€l7)1(~), . ,¢,(€l)rl()} in (S.2) is linearly independent
for some k € [ko]. Together with the decomposition (S.2) and the fact that any linearly
independent set of r; elements in a 7,-dimensional space forms a basis for that space, it
implies that Im(M,(cl)) = span{cpgl)(-), e gogl)()} for some k € [ko].

By the definition of the image space, we further have
Im{f 1\/[,(;)(-,w)l\/[,(j)(,w)T dw}
u
— {9 eH:G= J J M,il)(u, w)l\/_[,(cl)(v,w)T dwF(v)dv, Fe H}
u Ju
- {9 eH:G = J M,(f)(u,w)f Mg)(v,w)Tf}'(v) dvdw, F e ]HI}
u u
- {9 eH:G= f M,gl)(u,w)gf(w) dw, F e H} = Im{Mg)}.
u
Due to the nonnegativity of K!(-,-), we have that {, K" (u,v)d(v)dv = 0 if and only if
Y MY (u, w)MP (0, )T dwd(v)do = 0 for all k € [k]. This further leads to Im(K®) =

Ueteo) {5, MY (- w) M (-, w) " dw} = span{el’(-), ..., @\ (-)}. Hence, we complete the

proof of part (ii). Furthermore, since dim[Im{K®}] = r;, part (i) follows. O

C Proof of Theorem 1

Let v, = EQp]}_O‘lefa(nfl log p)(1=)/2 where E = s152(2p; + 1) with p; = maxe, p;. Recall
W, in (6) and V/Vy in (17). Since p~'v, — 0 implies that p.2MZlogp = o(n), it follows

from Lemma A3 and fixed kg that

= O0p(vy) . (S.3)

2

ko
W, — W, |, < Z JJ {70 (35 ) (u, )2 = By 1 (u, v)®?} dudv
k=0

Recall that T,R = (IIy,...,II,) = (3,,...,%,) and ,H = (AT, H,,...,A,, H) =

(715 -»7p)- By Lemma A4, for each [ € [q], we have that

ITL, — AT Hy[s < 8p7 W, — W, 5. (S.4)



Combining (5.3) and (S.4), it is immediate to see that

max |[¥; — ;]2 = Op(p™'vn) - (S.5)
J€lp]
Recall that 4, = ﬁw(i), Ti; = maxjk<m |]7A7;7;k(22k)ﬁ]\|3 and T}; = maxy<m ||’Y,;sz,k’)’j||s'
Notice that

ﬁ;(i)%k<2;,k>ﬁw(j) Y By, =h+ L+ I+ 1+ I, (S.6)

where [; = (:)\li_’)/i)T{,]:vk(Egs;,k)_zyyk}:)\’j? I = (%’i"?’z’)TEy,k(’?j_’Yj% I3 = (%i_’Yi)TEy,k’Yj’
I, = 'yj{fuk(flzk) — E%k}%j and I5 = ')/;Ey,k(ﬁj —7;). Let w, = E/\/lllj’o‘(n’1 log p)1—)/2,
Hence w, — 0 as implied by p~'v, — 0. By (S.5), the orthonormality of v; and 7;,

Lemma A3 and Inequality 2, we obtain that

max |I1]s = Oy (p~ tvpw,), max |Lls =0 ZEpio?)y
max |15 = Op(p™ vwn) . max |alls = Oy(p™Zp} ")

max [Lls = Oplwn),  max (1] + | sls) = Oplo™"Zp} 1)
i,5€[p] i,5€[p]

Together with p~'v,, — 0, w, — 0 and w,, = 0(v,,), it holds that

T — Tl < w N lls — v/ 2 , .
max (Tryn) = Tyl < | moax 76y Tor (5007 s = 13 2y, (8.7)

< max Mg T (325,00.G) — ¥ Zyaslls = Op(p™ Epy~vn).

i,jelp][k|<m
We now show that ¢ in (13) is a consistent estimate for p. For k € [R], without loss of

generality, we write Ty = T;,,

with i, jx € [p]. Since p‘lEp%’aVn/dn — 0 and 9,/s — 0, we
can find some h,, such that p‘l:p% “v, € h, < 0, <¢. Let Q= {max; jepp ’fw(i)w(j) — T <
hn, < ¢/2}. Tt is immediate to see that under the event ) we have ¢/2 < ﬁr(ik)w(jk) <¢/2+Ty

for k € [o] and 0 < Tﬂ(zk) () < hy for k> p. Due to the definition of 9, we have that

Tis) + 6n Tio) + 6n 246,
K0 > Lo S 240 S (S.5)
T(é+1) + 577, T(g+1) + (5 h + 5 (5n

under Q. If 0 < o, under fNZ,

f(@)+5n <§/2+T + 0, T(l)
f(@.t,_]_) + 5n §/2 + 5n S

5



Since 6, T(1)/s* — 0, (S.8) and (S.9) imply P(o < o/ ﬁ) — 0. Similarly, if 9 > p, under Q,

f(@)-i-(gn < hy, + 0, 1
f(éﬂ) +6,  0+0n

This together with (S.8) and 6,/s — 0 yields that P(6 > 0| ) — 0. Hence, P(p = 0| ) —
1. By (S.7), P(€) — 1. Combining the above results, we have P(9 = o) — 1. Recall
E={(,7): Ty 2T, 1<i<j<p} and E = {(i,j):ﬁj >f(@),1<i<j<p}. Under the
event {0 = p}, the permutation 7 : [p| — [p] actually provides a bijective mapping from the

graph ([p], E) to ([p], E) in the sense that {k, (i, 7)} € [p] x E — {x(k), (x(i),7(j))} € [p] x E.

Hence we complete the proof of Theorem 1.

D Proof of Theorem 2

Let v, = Ezp%_o‘/\/l;_a(n_l log p)(1=)/2 where = = s152(2pt + 1) with p; = maxejy pi. Since
p~ v, — 0, the result in (S.3) holds. This, together with (S.4) and the remark for Lemma 1

of Chang et al. (2018), yields that

max DIC(TL), C(A)} < o7 [Wy = Wyl = Oyl 'vn) (S.10)

Recall that IT, = (4,)iec, and A=A w6, Theorem 1 implies that there exists a permuta-
tion 7 : [q] — [q] such that P[_ {Gsq) = Gi}, ¢ = q] — 1. Let & = {Gz) = G, G = ¢}

and d,, = p~'v,. For any € > 0, by (S.10), there exists a constant C' > 0 such that

P| maxd, DiC(). C(a0) > €| <.
elq

which implies

P[maxmmd;lp{c@j),C(Al)} > C]

lelq] jeld]

< P[maxmin d;'D{C(A,),C(A)} > C, ﬁ Ql] + P(qu Qf)

lelq] jeld] =1 =1

< Pl%??dnlD{C(ﬁl),C(Al)} > c] +o(1) < e+o(l).

Hence, maxe[q) minjeg D{C(Aj), C(A))} = O,(dy,). We complete the proof of Theorem 2. []
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E Proof of Theorem 3

Recall that IT; = AT, ;H; = (7, )iec, and _&l = (¥,)iec;,- Write Mg)(u,v) =113, p(u,0)II;, =
(MO, 0)}i jepy and M (w,0) = ATT (35,0 (u,v) Ay = (M) (u,0)}ijepp- Let v =
EQp%_aM;’a(n*Ilogp)(lfo‘)/z, where = = s5159(2py + 1) with p; = maxe[q ;. By a similar
decomposition to (S.6) and pflEp%_o‘ » — 0, we obtain that max; jefp,],ie[q HMk M,ilsz
Op(p~t HQDJr ~“v,). Hence,

1/2
xd l 90 1) 1l 9
max [M) — M| = m( > 1M, M,EULS) = Op(p'Ep3 1) -

lal \ e

Write Z{(-) = {Z) (), ..., 2}

i ()37 It follows from Cauchy-Schwartz inequality that

maXHM )HSF = max Z ff{M,“] u,v)}? dudv

le(q

P P
max f {th ] du - max f {Zti),” Pldu = O(p3).

Observe that K®(u,v) — KO(u,0) = Y% § MY (u,w){M (v,w) = M (0, w)}" dw +

S 5 MY (1w, w0) M (, w) MY (v, w) T dw+ 352§, M (u, w0) M (1, w0) HMY (v, w)

M,(f (v,w)}" dw. Together with Inequality 1, p~ _pT v, — 0 and fixed ky, it holds that

k’() k()

> il l l il l

e [RO = KOs < mae 33 IMG) = M5 2max 3 IV s M = M s
k=1 k=1

72242042

= Op(p 2P 02) + Op(p™'Epi ™ vy) = Op(p™ ' Epi1y) .
This, together with Lemma A5, implies that

10} 0] —1=,3—a ~ () 1) 1 —1— 3—q
max |6 —60:| =0 = Vn), max S = = O0L(A = Vpn),
le[g].jelr] | J | (P Pt ) telal,jelr] H,lpj w] | o p =P; )
(S.11)

where A = minle[q]’je[rl]{ﬁél) — 9](21}.

Recall that
0 45,

7; = arg max —r——.
icln—ko] AU
geln=hol 637, + 0y,



Note that the condition §, maXe[q otV 01’/ mineq {Hn }2 — 0 implies that b, = o(mineq) e,ﬁ?).
By p‘lEp?’aun/én — 0 and 5n/ Mingeqy] (97(,? — 0, we can find some h,, such that p‘lEp‘;”aVn &

hy, < 6, < minepq 9,(,?. Let Q) = {maxle[ 1jeln] ]éj(.l) — 9](-[)\ <h, < minger, 1"1 /2} Under the

event (vl, we thus have ming, rl /2 l) < mingeq, Tl /2 + maxle[]Gl if j € [ry] and

A~

0< GJ(-Z) < hy if j > 1, for each [ € [¢]. Due to the definition of 7, for each [ € [¢], we have

that
SR N . )
0 + 5, y 0 + 6, , minie, 108 /2 + b, _ iefg) O (S.12)
Y S S S e h
under €. For each [ e [q], if 7 < 7y, under Q,
O
AH() + (5 < mlnle 1"1 /2 + maxle 9 + 5 — maXle 0( . (813)

97(,1 bt on minepq 97(‘1 /2 + (5n mingeqq] 9,(?

Since 4, maxe, )/mlnle {Hrl 12— 0, (S.12) and (S.13) imply P[UL {1 < ri}| Q] — 0.

Similarly, for each [ € [¢], if 7, > 7, under Q,

0 + 50+ b,

e<>1+5 0+ 0,

71+

This together with (S.12) and 8,/ mineg 6% — 0 yields that P[JL,{# > r}| €] — 0. Thus

PI_ {7 = ri} | fvl] — 1. By (S.11), IP’((VZ) — 1. We complete the proof of Theorem 3.  []

F Proof of Theorem 4

~ () o o
Let 9\ () = {#\0(),..., ') ()} and 9, (1) = {0 (),..., 4% ()}". Due to the orthonor-
mality of ¢§~l)(~) and @;l)(-), we obtain that

[w '@y - ¢§”®{¢§”}T]

f J Zmz [Z (i ) — % (W (v >}] dudy
-0 [ [ 3 3 i i) dus



rom

0358 e m

1=17=1 k=1m=1
—222”2 2. U @ g (i) (v) dudv
1=1j=1 k=1m=1
_ZZ@PZ ﬂ# >2+ZZ<¢1 , _2ZZ<@Z§Z)’¢?)>2
i=1s=1 i=1j=1 i—1j—1
—2r 2 D@ )
i=17j=1

~ ~ (1 ~ (1
Denote by C; = span{d)g)(-), . ,’l,bil)(-)} the dynamic space spanned by 7; estimated eigen-

~ o~ ~ ~ ~() A~

functions. By the definition of D(C;, C;), we thus have v/2r,D(C;,C;) = | Z;l:1[¢§ )®{1,b§. )}T -
1,b§-l) ® {1,/J§l)}T]H5F Let v, = :zp]%_o‘/\/l;a(nfl logp)1=/2 where = = s159(2p; + 1) with
Py = MaXje[q p1- Since AflpflEp?_o‘yn — 0, the result in (S.11) holds. This, together with

Equality 1, fixed r; and the orthonormality of w(.l)(‘), leads to

max v/2r,.D(C;, C) = 1}1{@3{

le[q]

Z[w @1 -9 (3} ]

S,F

< rlrel[aﬁ; ”’;L] - d)gl)HQ + 2112%4;2 ||¢§Z)HH":L§[) B ¢§1)H
= Op(A72p 2P 1) + Op (A7 p 'Sy vi)

= Op (A7 ' Ep] 1) .

Let e, = A™'p'Ep}~“v,. Theorem 3 implies that P[(_ {# = r;}] — 1. Thus, for any

€ > 0, there exists a constant C' > 0 such that

]P’{maxe D(C,,C) >C’} <

le(q]

which implies

]P’{ max e, 'D(C,C) > C’}

lelq]

< IP’[ maxe, ' D(C,C) > C, ﬂ{rl = rl}] - IP’{ qu[fl z n}]

leldl =1 =1

<P{maxe (Cl,Cl)>C} o(1) < e+o(1).

~ A~

Hence, maxeg) D(C;, C;) = Op(ern). We complete the proof of Theorem 4. O
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G Proofs of auxiliary lemmas

G.1 Proof of Inequality 1

By Cauchy—Schwartz inequality, we notice that

P
max JJ Z B ik (w, 0)Bg i (u, v) dudv
1 gl g el

< max Z Z |B1ik]s|Bo,jklls (S.14)

Hfjﬁl u,v)Bo(u,v)" dudv

S| HM*@

p p
E[sz |Bils - I};%Z I1B2,jlls = | Bils1|Bzls,0 -
i=1 —1

By similar argument, we obtain that

H J f B, (1, v)Bs (1, v) " dudv

< [Bils.olBalsa - (S.15)

a0
Combining (S.14) and (S.15) and applying the inequality |E|? < |E|y|E[; for any matrix
E € RP*? we complete the proof of part (i).

Let €(u,v) = §Bi(u, w)By(v,w) dw = {Cij(u,v)}ijefp)- It then follows from Cauchy-

Schwartz inequality that

€%y = Z ffe? u,v) dudv = Z f“iﬁam (u, w) By i (v, w)dw}2dudv

5,7=1 i,j=1 k=
< 3 [J{2 [otatmman- 3 [ 5 tofduce = 1380112
2,7=1

Hence, we complete the proof of part (ii).

By Cauchy—Schwartz inequality, we further obtain that

By + Bolip = Z JJ{B“, 1, 0) + Boy 5, 0) 1 dudv

z]l

=2 3 [ [B )00 due 4 1B+ 1Bl

i,7=1

<2|Bilsr|Balsr + |Bil5e + [Balsp = (IBilsr + |Bafsr)”.
Hence, we complete the proof of part (iii). O
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G.2 Proof of Inequality 2
By elementary calculations and Inequality 1, we obtain that
[bIBhy |2 — f fb;B(u,v)bgb;B(u,wbl dudy
< [ [ Ibab3lal B, ) i 3 dude
< aff | [ BIB(u,0)B(u) by dudo < o BbalB| B Bl

which completes our proof. ]

G.3 Proof of Inequality 3

Let F(u) = {Fi1(u),...,Fp(w)}" and G(u) = {B(u,v)F(v)dv = {Gi(u),...,9,(u)}". By

Cauchy—Schwartz inequality, we obtain that

512 - ng du—ZJ{Zﬁlf Bowu, 0) T v d}zdu
< ;H;Jggk(u v dvkzp]lf? dv}du- |B|2 5| F]?,

This further leads t0 [ B] 2 = supjg) < gess IB(F)] < supjs; ses| Bls.e| F| < |Blse, which

completes our proof. O

G.4 Proof of Equality 1

For F=(F,...,5,)  and G = (91,...,9,)" € H, it holds that

oG |2 = [ [7ws: dudv—{szﬁ du}{ng }:s—”gﬁ

i,7=1

Hence, we complete our proof. O

G.5 Proof of Lemma A1l

This lemma follows directly from Theorem 1 of Fang et al. (2022) and Theorem 2 of Guo

and Qiao (2023) and hence the proof is omitted here. O
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G.6 Proof of Lemma A2

Recall that maxep,) { E{Z;(v)} du = O(1). Hence,

2 = 2
o (Spli = max | [[BZu(0) Ze (o) dudo
<ma>](fE{ZEz< )} du m%«flﬁz{zw (@}do=0(1).  (8.16)
€

Let p; = maxerg pr- Since Xy, (u,v) = AX, p(u,v)A" and X, 11, = 0 for [l —m| > ps, then
Sy kij (W v) = 201 A kim (U, 0) Ajm = Z‘lmepT Au¥, kim(u, v)Aj,. By the inequality

(a+b)* <a*+b* for a,b >0 and « € [0,1), we obtain that
2 Ailzz,k,lmAjm

« p ¢4
ICHRTEEDY (T Eamdil,)
|l—m|<py S

i=1 N |l—m|<p;
<Z Do A Al e ham

i=1 [1—m]|<py

< max B el m‘dXE [Aal® - D Al
l,me[pl,|k|<kovm ¢
|ll—m|<ps

< 2 a . 2 1 A o
lvme[pﬁlﬂa“}ékovm H ngJmHS 52 ( pT + )7n2=1| ]m’

=0(2),

where = = s152(2p; + 1). By (S.16) and the block structure of X, ;(u,v), we further obtain
that |3, xlls) = maxjep) 2oy [|X2k45lls = O(py). Similarly, we also have |2, x|ls o = O(pt).

Together with Inequality 2 and the orthonormality of the rows in A, it holds that
P P
by = Yykiills < Sy piills Yy eiill% = O(Zpi ).
1%y ks 52%)}](; 1Zy 45l s zr?ea[;(] 1Ey 5] s rjréfa;](; 12y 5 s ( Dy )

Recall ky and m are fixed integers. Similarly, we can prove the rest of this lemma. ]

G.7 Proof of Lemma A3

Denote by 7:%( vkij) the (4, 7)-th component of 7:%(22 «). Due to the fact that ’7:%(23 kij) =

szw(u v)I{HEykaS > wy}, we have |7, (X y,“]) Y5 kijls < wi. Under the event Q =

12



{max; jef HZy,W Sykijlls < Owi} for 6 € (0,1) and wy, = cx M, (n~" logp)"/?, we have

maxz y,k’ Z] Ey,k,ij”S

= max 3| T, (55 1i5) = g lsTIES s lls > wn)

+ maXZ H7:Uk k 1] y,

ykngS < Wk}

Jje(lp]
p ~
< IJIé?P}]{ZH%k( ?S;,k,ij) kzg”SI{HZykzg‘ >wk7HEy» 1] ZWk}
i=1
+ leéaxz HES,k ij y,k,ij”S”HES,k,ij 13y, > wi}
+ maxz 1T (C5 k45) — Sy kg kigls = Wi [ By ksls < wit

+ r]naXZ HEny ZJ”SI{HEka s < wk}

< Wk [{sz,k ij HS Wy} + maX ”Zy, y,k,ij ls < 2wy}
3

i=1

. ) o )
v v

Q1 Q2

+maXZHES,km ka”SI{HEykzg

]E

‘ >wk7||277

Qs

l-a—=

By Lemma A2, we have Q1 + Qo < w, * Y0 |2, £.45]% < wy = under the event 2. Also,

HES (1~ O)wr}

Q3<m S>wk’a”27,

JG[P]

i Mvs

kg y, y k,ij H

+ gga[pXZ 125 i = Syag|sTUES 1islls = win (1= Owp < [Synijlls < wi)

(1= O)w}

p
<wp maXZI{HES,kU — By kijls > 0w} + wi IJ%‘E,)](Z H[ 2y kiills =
i=1

]E

= W maxz H{[Syhils = (1= 0w} S wp B
elp] <
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under the event €. By Lemma A1, if n = logp and é62¢2 > 2, then P(Q°) < 8p>~ ¥ — 0.

Combining the above results, we thus have

_ . 1ng (1—-a)/2
maxz H7:Jk ykl]) Ey,k,inS = OP{:‘Mlll ( ) ’

J€lp n

Recall ky and m are fixed integers. We have the first result. The second result can be
proved in the similar manner. Due to 7, (iz o) (U, 0) =3, (u,v)®? = {Ek(ﬁzk)(u,v) -
(1, 0) V22435 0, )T (852,01 0) =Sy, 0) )+ (3,0) (11, 0) 0, 0) By (1,0)',
it follows from Inequality 1 and Lemma A2 that

H f f {7 (85 (. 0)% = 8y, 0)®} dudv)

1/2 1/2 1/2 1/2
< 2|8y | SIS To (B3 ) — ykn/umzzk) I

7 (B 0) = By lsl Ton (30) — B klls oo

lng (1—-a)/2 lng 1-«
zop{zzp;—“/\/l;—“< - ) }+OP{EQM§‘2“<—n ) }

Since p; > Mz logp = o(n), we have the third result. O

G.8 Proof of Lemma A5

By the definition of spectral decomposition, we have that 6; = minge,

1 1Q — Bz and
0, = Minger, |Q — B, where Liy={B:Bel, dim(Im(B)) <j—1}. Thus, §; =
minger, , [Q— Bl < [Q— QH[:—FHHH%E[;J Q=B|z = |Q—-Q|,+0;. Similarly, we have
0, = minsec, |~ Ble < Q- Qle + minae, , Q- Ble = @ Q|+, Combining

the two above results with Inequality 3, we obtain that

16, -6,/ <|Q-Q|z < |Q - Qlsr (S.17)

holds for all j > 1, which completes our proof of part (i).
Without loss of generality, we assume that <¢j, ¢,) = 0. Since P <$j7 ¢l>2 — Hq% 12 =
and 0 < (;, ¢;» < 1, it holds that

[o0]

16— B0 = 3 (B ) — (s, )" = (D) — 1) + (D b))

=1 I#j
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— (B b)) — 2+ Db d) + D)
=1

l#j

=23, )" + 2y b)) — () <2D (D) (S.18)

l#j I#j
Observe that Q(¢;)(u) — 0;¢;(u) = (Q — Q)(¢,)(u) + (8; — 6;)¢;(u). This together with

Inequality 3, (S.17) and the orthonormality of (75]- implies that

1Q(¢;) — ;6] <2I1Q - Qlsr- (S.19)
We further write
1Q(e;) — 0,6, = i (@, Q1)) — Wby, b))
- ;el — 0%, ) > AE;@-, ¢ (5:20)
Combining (S.18)-(S.20), we complete the proof of part (ii). O
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